In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missin...In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missing material defects may result in the open circuit fault. Combining the mathematical morphology theory, we present a new computation model and a novel extraction algorithm for the open critical area based on the net flow-axis. Firstly, we find the net flow-axis for different nets. Then, the net flow-edges based on the net flow-axis are obtained. Finally, we can extract the open critical area by the mathematical morphology. Compared with the existing methods, the nets need not to divide into the horizontal nets and the vertical nets, and the experimental results show that our model and algorithm can accurately extract the size of the open critical area and obtain the location information of the open circuit critical area.展开更多
In current critical area models, it is generally assumed the defect outlines are circular and the conductors to be rectangle or the merger of rectangles. However, real defects and conductors associated with optimal la...In current critical area models, it is generally assumed the defect outlines are circular and the conductors to be rectangle or the merger of rectangles. However, real defects and conductors associated with optimal layout design exhibit a great variety of shapes. Based on mathematical morphology, a new critical area model is presented, which can be used to estimate the critical area of short circuit, open circuit and pinhole. Based on the new model, the efficient validity check algorithms are explored to extract critical areas of short circuit, open circuit and pinhole from layouts. The results of experiment on an approximate layout of 4 × 4 shifts register show that the new model predicts the critical areas accurately. These results suggest that the proposed model and algorithm could provide new approaches for yield prediction.展开更多
In the existing models of estimating the yield and critical area, the defect outline is usually assumed to be circular, but the observed real defect outlines are irregular in shape. In this paper, estimation of the yi...In the existing models of estimating the yield and critical area, the defect outline is usually assumed to be circular, but the observed real defect outlines are irregular in shape. In this paper, estimation of the yield and critical area is made using the Monte Carlo technique and the relationship between the errors of yield estimated by circular defect and the rectangle degree of the defect is analysed. The rectangular model of a real defect is presented, and the yield model is provided correspondingly. The models take into account an outline similar to that of an original defect, the characteristics of two-dimensional distribution of defects, the feature of a layout routing, and the character of yield estimation. In order to make the models practicable, the critical area computations related to rectangular defect and regular (vertical or horizontal) routing are discussed. The critical areas associated with rectangular defect and non- regular routing are developed also, based on the mathematical morphology. The experimental results show that the new yield model may predict the yield caused by real defects more accurately than the circular model. It is significant that the yield is accurately estimated using the proposed model for IC metals.展开更多
As die size and complexity increase, accurate and efficient extraction of the critical area is essential for yield prediction. Aiming at eliminating the potential integration errors of the traditional shape shifting m...As die size and complexity increase, accurate and efficient extraction of the critical area is essential for yield prediction. Aiming at eliminating the potential integration errors of the traditional shape shifting method, an improved shape shifting method is proposed for Manhattan layouts. By mathematical analyses of the relevance of critical areas to defect sizes, the critical area for all defect sizes is modeled as a piecewise quadratic polynomial function of defect size, which can be obtained by extracting critical area for some certain defect sizes. Because the improved method calculates critical areas for all defect sizes instead of several discrete values with traditional shape shifting method, it eliminates the integration error of the average critical area. Experiments on industrial layouts show that the improved shape shifting method can improve the accuracy of the average critical area calculation by 24.3% or reduce about 59.7% computational expense compared with the traditional method.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61173088 and 61070143)the 111 Project(Grant No.B08038)
文摘In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missing material defects may result in the open circuit fault. Combining the mathematical morphology theory, we present a new computation model and a novel extraction algorithm for the open critical area based on the net flow-axis. Firstly, we find the net flow-axis for different nets. Then, the net flow-edges based on the net flow-axis are obtained. Finally, we can extract the open critical area by the mathematical morphology. Compared with the existing methods, the nets need not to divide into the horizontal nets and the vertical nets, and the experimental results show that our model and algorithm can accurately extract the size of the open critical area and obtain the location information of the open circuit critical area.
文摘In current critical area models, it is generally assumed the defect outlines are circular and the conductors to be rectangle or the merger of rectangles. However, real defects and conductors associated with optimal layout design exhibit a great variety of shapes. Based on mathematical morphology, a new critical area model is presented, which can be used to estimate the critical area of short circuit, open circuit and pinhole. Based on the new model, the efficient validity check algorithms are explored to extract critical areas of short circuit, open circuit and pinhole from layouts. The results of experiment on an approximate layout of 4 × 4 shifts register show that the new model predicts the critical areas accurately. These results suggest that the proposed model and algorithm could provide new approaches for yield prediction.
文摘In the existing models of estimating the yield and critical area, the defect outline is usually assumed to be circular, but the observed real defect outlines are irregular in shape. In this paper, estimation of the yield and critical area is made using the Monte Carlo technique and the relationship between the errors of yield estimated by circular defect and the rectangle degree of the defect is analysed. The rectangular model of a real defect is presented, and the yield model is provided correspondingly. The models take into account an outline similar to that of an original defect, the characteristics of two-dimensional distribution of defects, the feature of a layout routing, and the character of yield estimation. In order to make the models practicable, the critical area computations related to rectangular defect and regular (vertical or horizontal) routing are discussed. The critical areas associated with rectangular defect and non- regular routing are developed also, based on the mathematical morphology. The experimental results show that the new yield model may predict the yield caused by real defects more accurately than the circular model. It is significant that the yield is accurately estimated using the proposed model for IC metals.
文摘As die size and complexity increase, accurate and efficient extraction of the critical area is essential for yield prediction. Aiming at eliminating the potential integration errors of the traditional shape shifting method, an improved shape shifting method is proposed for Manhattan layouts. By mathematical analyses of the relevance of critical areas to defect sizes, the critical area for all defect sizes is modeled as a piecewise quadratic polynomial function of defect size, which can be obtained by extracting critical area for some certain defect sizes. Because the improved method calculates critical areas for all defect sizes instead of several discrete values with traditional shape shifting method, it eliminates the integration error of the average critical area. Experiments on industrial layouts show that the improved shape shifting method can improve the accuracy of the average critical area calculation by 24.3% or reduce about 59.7% computational expense compared with the traditional method.