期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Vascular restoration through local delivery of angiogenic factors stimulates bone regeneration in critical size defects
1
作者 Liang Fang Zhongting Liu +9 位作者 Cuicui Wang Meng Shi Yonghua He Aiwu Lu Xiaofei Li Tiandao Li Donghui Zhu Bo Zhang Jianjun Guan Jie Shen 《Bioactive Materials》 SCIE CSCD 2024年第6期580-594,共15页
Critical size bone defects represent a significant challenge worldwide,often leading to persistent pain and physical disability that profoundly impact patients’quality of life and mental well-being.To address the int... Critical size bone defects represent a significant challenge worldwide,often leading to persistent pain and physical disability that profoundly impact patients’quality of life and mental well-being.To address the intricate and complex repair processes involved in these defects,we performed single-cell RNA sequencing and revealed notable shifts in cellular populations within regenerative tissue.Specifically,we observed a decrease in progenitor lineage cells and endothelial cells,coupled with an increase in fibrotic lineage cells and pro-inflammatory cells within regenerative tissue.Furthermore,our analysis of differentially expressed genes and associated signaling pathway at the single-cell level highlighted impaired angiogenesis as a central pathway in critical size bone defects,notably influenced by reduction of Spp1 and Cxcl12 expression.This deficiency was particularly pronounced in progenitor lineage cells and myeloid lineage cells,underscoring its significance in the regeneration process.In response to these findings,we developed an innovative approach to enhance bone regeneration in critical size bone defects.Our fabrication process involves the integration of electrospun PCL fibers with electrosprayed PLGA microspheres carrying Spp1 and Cxcl12.This design allows for the gradual release of Spp1 and Cxcl12 in vitro and in vivo.To evaluate the efficacy of our approach,we locally applied PCL scaffolds loaded with Spp1 and Cxcl12 in a murine model of critical size bone defects.Our results demonstrated restored angiogenesis,accelerated bone regeneration,alleviated pain responses and improved mobility in treated mice. 展开更多
关键词 critical size bone defects ANGIOGENESIS Spp1 CXCL12 Polycaprolactone scaffold
原文传递
Carboxymethyl chitosan-alginate enhances bone repair effects of magnesium phosphate bone cement by activating the FAK-Wnt pathway 被引量:2
2
作者 Ling Yu Tian Gao +8 位作者 Wei Li Jian Yang Yinchu Liu Yanan Zhao Ping He Xuefeng Li Weichun Guo Zhengfu Fan Honglian Dai 《Bioactive Materials》 SCIE CSCD 2023年第2期598-609,共12页
There is a continuing need for artificial bone substitutes for bone repair and reconstruction,Magnesium phosphate bone cement(MPC)has exceptional degradable properties and exhibits promising biocompatibility.However,i... There is a continuing need for artificial bone substitutes for bone repair and reconstruction,Magnesium phosphate bone cement(MPC)has exceptional degradable properties and exhibits promising biocompatibility.However,its mechanical strength needs improved and its low osteo-inductive potential limits its therapeutic application in bone regeneration.We functionally modified MPC by using a polymeric carboxymethyl chitosan-sodium alginate(CMCS/SA)gel network.This had the advantages of:improved compressive strength,ease of handling,and an optimized interface for bioactive bone in-growth.The new composites with 2%CMCS/SA showed the most favorable physicochemical properties,including mechanical strength,wash-out resistance,setting time,injectable time and heat release.Biologically,the composite promoted the attachment and proliferation of osteoblast cells.It was also found to induce osteogenic differentiation in vitro,as verified by expression of osteogenic markers.In terms of molecular mechanisms,data showed that new bone cement activated the Wnt pathway through inhibition of the phosphorylation ofβ-catenin,which is dependent on focal adhesion kinase.Through micro-computed tomography and histological analysis,we found that the MPC-CMCS/SA scaffolds,compared with MPC alone,showed increased bone regeneration in a rat calvarial defect model.Overall,our study suggested that the novel composite had potential to help repair critical bone defects in clinical practice. 展开更多
关键词 critical bone defect Magnesium phosphate cement Carboxymethyl chitosan Sodium alginate Osteogenic differentiation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部