In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated. With the help of computer algebra system MATHEMAT...In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated. With the help of computer algebra system MATHEMATICA, the first 8 quasi Lyapunov constants are deduced. As a result, the necessary and sufficient conditions to have a center are obtained. The fact that there exist 8 small amplitude limit cycles created from the three-order nilpotent critical point is also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point for quintic Lyapunov systems.展开更多
3×3块鞍点问题作为一类特殊的线性方程组,其迭代方法的研究极具挑战性。基于经典的广义逐次超松弛(Generalized Successive Over Relaxation,GSOR)方法,针对3×3块大型稀疏鞍点问题,提出了三参数的中心预处理GSOR方法并讨论了...3×3块鞍点问题作为一类特殊的线性方程组,其迭代方法的研究极具挑战性。基于经典的广义逐次超松弛(Generalized Successive Over Relaxation,GSOR)方法,针对3×3块大型稀疏鞍点问题,提出了三参数的中心预处理GSOR方法并讨论了其收敛性。同时,通过数值实验验证了新方法在计算花费方面优于中心预处理的Uzawa-Low方法。进一步地,还将新方法拓展到i×i块鞍点问题,提出了相应的GSOR类迭代框架,通过数值实验和数据分析,给出了选择较优i的初步建议。展开更多
We study the global qualitative properties of the well-known Kukles systems (1) below. Firstly, the number of critical points in case (1) has a center or a fine focus.
用变分方法研究非自治 L agrange系统周期解的问题转化为研究 L agrange作用泛函的临界点问题 .对 L agrange系统 ,人们用变分方法已经获得了一系列可解性条件 ,但是除在超二次条件下 ,Lagrange作用泛函都是下方有界的 .这里的目的是给...用变分方法研究非自治 L agrange系统周期解的问题转化为研究 L agrange作用泛函的临界点问题 .对 L agrange系统 ,人们用变分方法已经获得了一系列可解性条件 ,但是除在超二次条件下 ,Lagrange作用泛函都是下方有界的 .这里的目的是给出 Lagrange作用泛函无界的 L agrange系统周期解的其它可解性条件 .这时的主要困难是对应的 L agrange作用泛函不再是下方有界的 .这里用临界点理论中的鞍点定理得到了展开更多
基金Supported by the Natural Science Foundation of Shandong Province (Grant No. Y2007A17)
文摘In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated. With the help of computer algebra system MATHEMATICA, the first 8 quasi Lyapunov constants are deduced. As a result, the necessary and sufficient conditions to have a center are obtained. The fact that there exist 8 small amplitude limit cycles created from the three-order nilpotent critical point is also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point for quintic Lyapunov systems.
文摘3×3块鞍点问题作为一类特殊的线性方程组,其迭代方法的研究极具挑战性。基于经典的广义逐次超松弛(Generalized Successive Over Relaxation,GSOR)方法,针对3×3块大型稀疏鞍点问题,提出了三参数的中心预处理GSOR方法并讨论了其收敛性。同时,通过数值实验验证了新方法在计算花费方面优于中心预处理的Uzawa-Low方法。进一步地,还将新方法拓展到i×i块鞍点问题,提出了相应的GSOR类迭代框架,通过数值实验和数据分析,给出了选择较优i的初步建议。
基金Project supported by the Natural Science Foundation of China.
文摘We study the global qualitative properties of the well-known Kukles systems (1) below. Firstly, the number of critical points in case (1) has a center or a fine focus.
文摘用变分方法研究非自治 L agrange系统周期解的问题转化为研究 L agrange作用泛函的临界点问题 .对 L agrange系统 ,人们用变分方法已经获得了一系列可解性条件 ,但是除在超二次条件下 ,Lagrange作用泛函都是下方有界的 .这里的目的是给出 Lagrange作用泛函无界的 L agrange系统周期解的其它可解性条件 .这时的主要困难是对应的 L agrange作用泛函不再是下方有界的 .这里用临界点理论中的鞍点定理得到了