Removal of Co(Ⅱ) from aqueous solutions by complexation-ultrafiltration was investigated using polyacrylic acid sodium(PAAS) as complexing agent with the help of rotating disk membrane,and the shear ability of PAA-Co...Removal of Co(Ⅱ) from aqueous solutions by complexation-ultrafiltration was investigated using polyacrylic acid sodium(PAAS) as complexing agent with the help of rotating disk membrane,and the shear ability of PAA-Co complex was studied. The effects of the mass ratio of PAAS to Co(Ⅱ)(P/M) and pH on the rejection of Co(Ⅱ) were studied,and the optimum conditions were P/M=8 and pH=7. The rejection of Co(Ⅱ) was over 97% when the rotating speed of the disk(n)was less than 710 r/min at the optimum P/M and pH. The distribution of the forms of cobalt on the membrane surface was established by the membrane partition model, and the critical shear rate,the smallest shear rate at which the PAA-Co complex begins to dissociate,was calculated to be1.4×10^4 s^-1,and the corresponding rotating speed was 710 r/min.The PAA-Co complex dissociated when the shear rate was greater than the critical one. The regeneration of PAAS and recovery of Co(Ⅱ) were achieved by shear-induced dissociation and ultrafiltration.展开更多
Removal of cadmium(Ⅱ) ions from dilute aqueous solutions by complexation–ultrafiltration using rotating disk membrane was investigated. Polyacrylic acid sodium(PAAS) was used as complexation agent, as key factors of...Removal of cadmium(Ⅱ) ions from dilute aqueous solutions by complexation–ultrafiltration using rotating disk membrane was investigated. Polyacrylic acid sodium(PAAS) was used as complexation agent, as key factors of complexation, pH and the mass ratio of PAAS to Cd^(2+)(P/M) were studied, and the optimum complexation–ultrafiltration conditions were obtained. The effects of rotating speed(n) on the stability of PAA–Cd complex was studied with two kinds of rotating disk, disk Ⅰ(without vane) and disk Ⅱ(with six rectangular vanes) at a certain range of rotating speed. Both of the rejection could reach 99.7% when n was lower than 2370 r·min^(-1) and 1320 r·min^(-1), for disk I and disk Ⅱ, respectively. However, when rotating speed exceeds a certain value,the critical rotating speed(n_c), the rejection of Cd(Ⅱ) decreases greatly. The distribution of form of cadmium on the membrane was established by the membrane partition model, and the critical shear rate(γ_c), the smallest shear rate at which the PAA–Cd complex begins to dissociate, was calculated based on the membrane partition model and mass balance. The critical shear rates(γ_c) of PAA–Cd complex were 5.9 × 10~4 s^(-1), 1.01 × 10~5 s^(-1),and 1.31 × 10~5 s^(-1) at pH = 5.0, 5.5, and 6.0, respectively. In addition, the regeneration of PAAS was achieved by shear induced dissociation and ultrafiltration.展开更多
基金Project(24176265)supported by the National Natural Science Foundation of China
文摘Removal of Co(Ⅱ) from aqueous solutions by complexation-ultrafiltration was investigated using polyacrylic acid sodium(PAAS) as complexing agent with the help of rotating disk membrane,and the shear ability of PAA-Co complex was studied. The effects of the mass ratio of PAAS to Co(Ⅱ)(P/M) and pH on the rejection of Co(Ⅱ) were studied,and the optimum conditions were P/M=8 and pH=7. The rejection of Co(Ⅱ) was over 97% when the rotating speed of the disk(n)was less than 710 r/min at the optimum P/M and pH. The distribution of the forms of cobalt on the membrane surface was established by the membrane partition model, and the critical shear rate,the smallest shear rate at which the PAA-Co complex begins to dissociate,was calculated to be1.4×10^4 s^-1,and the corresponding rotating speed was 710 r/min.The PAA-Co complex dissociated when the shear rate was greater than the critical one. The regeneration of PAAS and recovery of Co(Ⅱ) were achieved by shear-induced dissociation and ultrafiltration.
基金Supported by the National Natural Science Foundation of China(21476265)
文摘Removal of cadmium(Ⅱ) ions from dilute aqueous solutions by complexation–ultrafiltration using rotating disk membrane was investigated. Polyacrylic acid sodium(PAAS) was used as complexation agent, as key factors of complexation, pH and the mass ratio of PAAS to Cd^(2+)(P/M) were studied, and the optimum complexation–ultrafiltration conditions were obtained. The effects of rotating speed(n) on the stability of PAA–Cd complex was studied with two kinds of rotating disk, disk Ⅰ(without vane) and disk Ⅱ(with six rectangular vanes) at a certain range of rotating speed. Both of the rejection could reach 99.7% when n was lower than 2370 r·min^(-1) and 1320 r·min^(-1), for disk I and disk Ⅱ, respectively. However, when rotating speed exceeds a certain value,the critical rotating speed(n_c), the rejection of Cd(Ⅱ) decreases greatly. The distribution of form of cadmium on the membrane was established by the membrane partition model, and the critical shear rate(γ_c), the smallest shear rate at which the PAA–Cd complex begins to dissociate, was calculated based on the membrane partition model and mass balance. The critical shear rates(γ_c) of PAA–Cd complex were 5.9 × 10~4 s^(-1), 1.01 × 10~5 s^(-1),and 1.31 × 10~5 s^(-1) at pH = 5.0, 5.5, and 6.0, respectively. In addition, the regeneration of PAAS was achieved by shear induced dissociation and ultrafiltration.