We propose that the brittle-ductile transition (BDT) controls the seismic cycle. In particular, the movements detected by space geodesy record the steady state deformation in the ductile lower crust, whereas the sti...We propose that the brittle-ductile transition (BDT) controls the seismic cycle. In particular, the movements detected by space geodesy record the steady state deformation in the ductile lower crust, whereas the stick-slip behavior of the brittle upper crust is constrained by its larger friction. GPS data allow analyzing the strain rate along active plate boundaries. In all tectonic settings, we propose that earthquakes primarily occur along active fault segments characterized by relative minima of strain rate, segments which are locked or slowly creeping. We discuss regional examples where large earthquakes happened in areas of relative low strain rate. Regardless the tectonic style, the interseismic stress and strain pattern inverts during the coseismic stage. Where a dilated band formed during the interseismic stage, this will be shortened at the coseismic stage, and vice-versa what was previously shortened, it will be dilated. The interseismic energy accumulation and the coseismic expenditure rather depend on the tectonic setting (extensional, contractional, or strike-slip). The gravitational potential energy dominates along normal faults, whereas the elastic energy prevails for thrust earthquakes and performs work against the gravity force. The energy budget in strike-slip tectonic setting is also primarily due elastic energy. Therefore, precursors may be different as a function of the tectonic setting. In this model, with a given displacement, the magnitude of an earthquake results from the coseismic slip of the deformed volume above the BDT rather than only on the fault length, and it also depends on the fault kinematics.展开更多
The brittle–ductile transition(BDT) widely exists in the manufacturing with extremely small deformation scale, thermally assisted machining, and high-speed machining. This paper reviews the BDT in extreme manufacturi...The brittle–ductile transition(BDT) widely exists in the manufacturing with extremely small deformation scale, thermally assisted machining, and high-speed machining. This paper reviews the BDT in extreme manufacturing. The factors affecting the BDT in extreme manufacturing are analyzed, including the deformation scale and deformation temperature induced brittle-to-ductile transition, and the reverse transition induced by grain size and strain rate. A discussion is arranged to explore the mechanisms of BDT and how to improve the machinability based on the BDT. It is proposed that the mutual transition between brittleness and ductility results from the competition between the occurrence of plastic deformation and the propagation of cracks. The brittleness or ductility of machined material should benefit a specific manufacturing process, which can be regulated by the deformation scale, deformation temperature and machining speed.展开更多
基金provided by the Italian Presidenza del Consiglio dei Ministri-Dipartimento della Protezione Civile(DPC) within the INGV-DPC 2007-2009 agreement(project S1),Sapienza University and CNR-EurocoresTopoEurope
文摘We propose that the brittle-ductile transition (BDT) controls the seismic cycle. In particular, the movements detected by space geodesy record the steady state deformation in the ductile lower crust, whereas the stick-slip behavior of the brittle upper crust is constrained by its larger friction. GPS data allow analyzing the strain rate along active plate boundaries. In all tectonic settings, we propose that earthquakes primarily occur along active fault segments characterized by relative minima of strain rate, segments which are locked or slowly creeping. We discuss regional examples where large earthquakes happened in areas of relative low strain rate. Regardless the tectonic style, the interseismic stress and strain pattern inverts during the coseismic stage. Where a dilated band formed during the interseismic stage, this will be shortened at the coseismic stage, and vice-versa what was previously shortened, it will be dilated. The interseismic energy accumulation and the coseismic expenditure rather depend on the tectonic setting (extensional, contractional, or strike-slip). The gravitational potential energy dominates along normal faults, whereas the elastic energy prevails for thrust earthquakes and performs work against the gravity force. The energy budget in strike-slip tectonic setting is also primarily due elastic energy. Therefore, precursors may be different as a function of the tectonic setting. In this model, with a given displacement, the magnitude of an earthquake results from the coseismic slip of the deformed volume above the BDT rather than only on the fault length, and it also depends on the fault kinematics.
基金support from the National Natural Science Foundation of China (Grant No. 51835004)。
文摘The brittle–ductile transition(BDT) widely exists in the manufacturing with extremely small deformation scale, thermally assisted machining, and high-speed machining. This paper reviews the BDT in extreme manufacturing. The factors affecting the BDT in extreme manufacturing are analyzed, including the deformation scale and deformation temperature induced brittle-to-ductile transition, and the reverse transition induced by grain size and strain rate. A discussion is arranged to explore the mechanisms of BDT and how to improve the machinability based on the BDT. It is proposed that the mutual transition between brittleness and ductility results from the competition between the occurrence of plastic deformation and the propagation of cracks. The brittleness or ductility of machined material should benefit a specific manufacturing process, which can be regulated by the deformation scale, deformation temperature and machining speed.
基金supported by the National Natural Science Foundation of China(Nos.11872317,11972310)the Project of Key Laboratory of Impact and Safety Engineering(Ningbo University),Ministry of Education,China(No.CJ202208)Science Challenge Project,China(No.TZ2018001)。