Full-scale numerical experiments were carried out on the vehicular fire in a long tunnel to study the critical ventilation velocity and back-layer distance with heat release rate of 5, 20 and 100 MW respectively. A co...Full-scale numerical experiments were carried out on the vehicular fire in a long tunnel to study the critical ventilation velocity and back-layer distance with heat release rate of 5, 20 and 100 MW respectively. A computational fluid dynamics (CFD) model of fire-driven fluid flow FDS(Fire Dynamics Simulator) was used to solve numerically a form of the Navier-Stokes equations for fire. The results were compared with the expressions proposed in the literature. A modified equation for the critical ventilation velocity was given to better fit the experimental results. A bi-exponential model that well fitted the numerical experimental results was proposed to describe the relationship between back-layer distance and ventilation velocity.展开更多
For ventilated cavitating flows in a closed water tunnel, the wall effect may exert an important influence on cavity shape and hydrodynamics, An isotropic mixture multiphase model was established to study the wall eff...For ventilated cavitating flows in a closed water tunnel, the wall effect may exert an important influence on cavity shape and hydrodynamics, An isotropic mixture multiphase model was established to study the wall effect based on the RANS equations, coupled with a natural cavitation model and the RNG k-ε turbulent model. The governing equations were discretized using the finite volume method and solved by the Gauss-Seidel linear equation solver on the basis of a segregation algorithm. The algebraic multigrid approach was carried through to accelerate the convergence of solution. The steady ventilated cavitating flows in water tunnels of different diameter were simulated for a conceptual underwater vehicle model which had a disk cavitator. It is found that the choked cavitation number derived is close to the approximate solution of natural cavitating flow for a 3-D disk. The critical ventilation rate falls with decreasing diameter of the water tunnel. However, the cavity size and drag coeflicient are rising with the decrease in tunnel diameter for the same ventilation rate, and the cavity size will be much different in water tunnels of different diameter even for the same ventilated cavitation number.展开更多
基金Supported by the Shanghai Municipal Infor mation Fund Project (2004)
文摘Full-scale numerical experiments were carried out on the vehicular fire in a long tunnel to study the critical ventilation velocity and back-layer distance with heat release rate of 5, 20 and 100 MW respectively. A computational fluid dynamics (CFD) model of fire-driven fluid flow FDS(Fire Dynamics Simulator) was used to solve numerically a form of the Navier-Stokes equations for fire. The results were compared with the expressions proposed in the literature. A modified equation for the critical ventilation velocity was given to better fit the experimental results. A bi-exponential model that well fitted the numerical experimental results was proposed to describe the relationship between back-layer distance and ventilation velocity.
基金the National Natural Science Foundation of China ( Grant No. 10372061).
文摘For ventilated cavitating flows in a closed water tunnel, the wall effect may exert an important influence on cavity shape and hydrodynamics, An isotropic mixture multiphase model was established to study the wall effect based on the RANS equations, coupled with a natural cavitation model and the RNG k-ε turbulent model. The governing equations were discretized using the finite volume method and solved by the Gauss-Seidel linear equation solver on the basis of a segregation algorithm. The algebraic multigrid approach was carried through to accelerate the convergence of solution. The steady ventilated cavitating flows in water tunnels of different diameter were simulated for a conceptual underwater vehicle model which had a disk cavitator. It is found that the choked cavitation number derived is close to the approximate solution of natural cavitating flow for a 3-D disk. The critical ventilation rate falls with decreasing diameter of the water tunnel. However, the cavity size and drag coeflicient are rising with the decrease in tunnel diameter for the same ventilation rate, and the cavity size will be much different in water tunnels of different diameter even for the same ventilated cavitation number.