Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study...Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study aimed to assess the exposure status of chlorinated DBPs in recreational water and the health risks to employees of large amusement parks.Methods Exposure parameters of employees of three large amusement parks in Shanghai were investigated using a questionnaire.Seven typical chlorinated DBPs in recreational water and spray samples were quantified by gas chromatography,and the health risks to amusement park employees exposed to chlorinated DBPs were evaluated according to the WHO's risk assessment framework.Results Trichloroacetic acid,dibromochloromethane,bromodichloromethane,and dichloroacetic acid were detected predominantly in recreational water.The carcinogenic and non-carcinogenic risks of the five DBPs did not exceed the risk thresholds.In addition,the carcinogenic and non-carcinogenic risks of mixed exposure to DBPs were within the acceptable risk limits.Conclusion Typical DBPs were widely detected in recreational water collected from three large amusement parks in Shanghai;however,the health risks of DBPs and their mixtures were within acceptable limits.展开更多
Ensuring the health and safety of drinking water is crucial for both nations and their citizens.Since the 20th century,the disinfection of drinking water,effectively controlling pathogens in water sources,has become o...Ensuring the health and safety of drinking water is crucial for both nations and their citizens.Since the 20th century,the disinfection of drinking water,effectively controlling pathogens in water sources,has become one of the significant advances in public health.However,the disinfectants used in the process,such as chlorine and chlorine dioxide,react with natural organic matter in the water to produce disinfection by-products(DBPs).Most of these DBPs contain chlorine,and if the source water contains bromine or iodine,brominated or iodinated DBPs,collectively referred to as Halogenated disinfection byproducts(X-DBPs),are formed.Numerous studies have found that X-DBPs pose potential risks to human health and the environment,leading to widespread concern.Mass spectrometry has become an important means of discovering new types of X-DBPs.This paper focuses on the study of methods for analyzing X-DBPs in drinking water using mass spectrometry.展开更多
The world is experiencing a growing shortage of raw materials which is especially severe in the energy sector and being worsened by the unfavorable environmental impact of a consumerist cultttre revolving around the e...The world is experiencing a growing shortage of raw materials which is especially severe in the energy sector and being worsened by the unfavorable environmental impact of a consumerist cultttre revolving around the exploitation of non-renewable resources. In this work, the calorific value and chemical composition of liquors resulting from the autohydrolysis of six different lignocellulosic materials was determined (Eucalyptus globulus, Arundo donax, Leucaena diversifolia, Paulownia fortunei, Sunflower stalks and Chamaecytisus proliferus) and was assessed for the obtainment of energy, sugars and other chemical products by using of integral fractionation based on autohydrolysis. Autohydrolysis processes have been considered interesting in the case of timber species studied compared with herbaceous species with variations in the extraction of the xylan fraction at 180℃ between 19.68% for Eucalyptus globulus and 36.79% for Leucaena diversifolia and 200℃ between 57.86% for Paulawniafortunei and 79.13 % for Chamaecytisusproliferus. In general, all materials show a solid fraction "more energy" from the hydrolysis to 200℃ than 180℃ and raw materials. It is interesting as the potential economy valuation of the liquid fractions of the hydrolysis, the solid waste recovery present more energetic profitability.展开更多
This experiment was conducted to study the effect of molasses on the fermentation characteristics of mixed silage ensiled rice straw and vegetable by-products with alfalfa.Mixture(202 g kg^-1 dry matter(DM))consis...This experiment was conducted to study the effect of molasses on the fermentation characteristics of mixed silage ensiled rice straw and vegetable by-products with alfalfa.Mixture(202 g kg^-1 dry matter(DM))consisting of rice straw,broccoli residue and alfalfa at the ratio of 5:4:1 was ensiled with three experimental treatments:(1)no additives(control);(2)molasses at 2.5%(M1);(3)molasses at 5%(M2)on a fresh matter basis of mixture,respectively.All treatments were packed into laboratory-scale silos,and three silos per treatment were sampled on days 1,3,5,14 and 30.The result showed that the p H value of all mixed silages decreased gradually with the time of ensiling except for the control silage,in which a significant increase(P〈0.05)on day 30 occurred.The lactic acid content increased gradually with the time of ensiling and reached the highest value on day 14,and a marked decrease(P〈0.05)was found in the control silage on day 30.The changes of acetic acid content showed similar pattern with lactic acid content.A trace amount of propionic and butyric acid contents were found in the three mixed silages during the fermentation period.Comparing to the control,M1 and M2 treatments improved the fermentation quality of mixed silages as indicated by higher(P〈0.05)lactic acid contents and lower(P〈0.05)p H and ammonia-N contents.The Flieg points also showed that M1 and M2 silages were well preserved,whereas the control silage had a bad quality.Overall,the findings of this study suggested that adding molasses could improve fermentation quality of mixed silage,and M1 was more suitable for practical application.展开更多
Objective To introduce a new sequential chlorination disinfection process in which short-term free chlorine and chloramine are sequentially added. Methods Pilot tests of this sequential chlorination were carried out i...Objective To introduce a new sequential chlorination disinfection process in which short-term free chlorine and chloramine are sequentially added. Methods Pilot tests of this sequential chlorination were carried out in a drinking water plant. Results The sequential chlorination disinfection process had the same or better efficiency on microbe (including virus) inactivation compared with the free chlorine disinfection process. There seemed to be some synergetic disinfection effect between free chlorine and monochloramine because they attacked different targets. The sequential chlorination disinfection process resulted in 35.7%-77.0% TTHM formation and 36.6%-54.8% THAA5 formation less than the free chlorination process. The poorer the water quality was, the more advantage the sequential chlorination disinfection had over the free chlorination. Conclusion This process takes advantages of free chlorine's quick inactivation of microorganisms and chloramine's low disinfection by-product (DBP) yield and long-term residual effect, allowing simultaneous control of microbes and DBPs in an effective and economic way.展开更多
A feeding trial was conducted for 75 d to evaluate the nutritive value of a mixture of animal by-products (MAB) as a possible protein source in diets for juvenile mangrove red snapper, Lutjanus argentimaculatus (me...A feeding trial was conducted for 75 d to evaluate the nutritive value of a mixture of animal by-products (MAB) as a possible protein source in diets for juvenile mangrove red snapper, Lutjanus argentimaculatus (mean initial body weight, 30 g). Fish were fed one of five isonitrogenous diets (40% crude protein) replacing 0, 25% (MAB25), 50% (MAB50), 75% (MAB75) and 100% (MAB100) of fish meal protein with similar percentages of MAB. The MAB consisted of 25% cow liver meal, 20% leather meal, 20% meat and bone meal, 15% blood meal, 10% APC (poultry feather meal), 8% poultry manure dried, 1.5% choline and 0.5% chromic oxide. After 75 d of feeding, fish fed with diets MAB50, MAB75 and MABI00 exhibited significantly lower growth performance than that of fish fed with control and MAB25 diets. The optimum level of MAB was estimated to be 23%. Replacement of fish meal by MAB23% showed the following performance: maximum weight gain, 510%; SGR, 2.39% and FCE, 2.83%. The MAB substitution up to 75% of fish meal protein in diets did not show differences in apparent protein digestibility (83.6% for MAB25, 79.2% for MAB50, 78.7% for MAB75) compared with control (83.4%), whereas in MABI00 group digestibility (65.3%) was significantly lower than in other groups. The apparent phosphorus absorption of test diet groups was significantly higher (37.1% for MAB25, 28.5% for MABS0, 55.6% for MAB75 and 54.5% for MABI00) than that of control (1 1.2%). The levels of protein and ash in the whole body, carcass and viscera increased as MAB substitution in diets increased, whereas lipids and moisture remained consistent among all treatment groups. These results showed that approximately 23% of fish meal protein could be replaced by a mixture of animal by-products for juvenile snapper growing from 30 g to 167 g in 75 d without compromising growth performance and feed efficiency.展开更多
An innovative technology,nitric acid pressure leaching of limonitic laterite ores,was proposed by our research team.The HNO3 regeneration is considerable significance for the improvement of the proposed technology and...An innovative technology,nitric acid pressure leaching of limonitic laterite ores,was proposed by our research team.The HNO3 regeneration is considerable significance for the improvement of the proposed technology and its commercial application,but it has not been systematically investigated.Herein,regenerating HNO3 from Ca(NO3)2 solution with low-cost H2SO4,and simultaneous synthesis of fibrous CaSO4·2H2O by-products were studied.As a theoretical basis,the solubility of CaSO4·2H2O in HNO3 medium is studied.It is concluded that the solubility of CaSO4·2H2O increases with increasing temperature or increasing HNO3 concentration,which has considerable guiding significance for the subsequent experimental research and analysis.Then,the effects of various factors on the residual Ca^2+ concentration of filtrate,the regenerated HNO3 concentration and the morphology of synthesized products are investigated using ICP-AES and SEM.And the effect mechanism is also analyzed.The results indicate the regenerated HNO3 concentration reaches 116 g/L with the residual Ca^2+ concentration being 9.7 g/L at the optimum conditions.Moreover,fibrous CaSO4·2H2O by-products with high aspect ratios(length,406.32μm;diameter,14.71μm;aspect ratio,27.62)can be simultaneously synthesized.展开更多
Objective: To evaluate the ovicidal, larvicidal and adulticidal potential of neem cake fractions of different polarity against the rural malaria vector Anopheles culicifacies(An.culicifacies).Methods: Neem cake fracti...Objective: To evaluate the ovicidal, larvicidal and adulticidal potential of neem cake fractions of different polarity against the rural malaria vector Anopheles culicifacies(An.culicifacies).Methods: Neem cake fractions' total methanol extract(NTMeOH), total ethyl acetate extract(NTAc OEt), ethyl acetate fraction after repartition with NTMe OH(NRAc OEt),butanol fraction after repartition with NTMeOH(NRBuOH), and aqueous fraction after repartition of NTMeOH(NRH2O) were tested against An. culicifacies eggs, fourth instar larvae and adults.Results: In larvicidal experiments, NTMeOH, NTAcOEt, NRAcOEt, NRBuOH and NRH2O achieved LC50 values of 1.32, 1.50, 1.81, 1.95 and 2.54 mg/L, respectively. All fractions tested at 150 mg/L were able to reduce egg hatchability of more than 50%, with the exception of NTAc OEt and NRAc OEt. In adulticidal assays, NTMeOH, NTAcOEt,NRAcOEt, NRBuOH and NRH2O achieved LC50 values of 3.01, 2.95, 3.23, 3.63 and3.00 mg/L, respectively.Conclusions: Overall, this study suggests that the methanolic fractions of neem cake may be considered as a new and cheap source of highly effective compounds against the rural malaria vector An. culicifacies.展开更多
Corn is a high starchy cereal crop with the highest production and provides over 85%of the starch produced worldwide.Various by-products,differentiated by technological process features such as steep liquor,corn germ,...Corn is a high starchy cereal crop with the highest production and provides over 85%of the starch produced worldwide.Various by-products,differentiated by technological process features such as steep liquor,corn germ,corn bran,gluten,are created largely during corn starch processing.They are inexpensive,nutrient-rich,and vary widely in chemical composition such as proteins,oils,carbohydrates,and minerals.In an increasingly resource-constrained modern world,the utilization approach of these by-products for non-starch industrial processing is attractive widely considering both nutritive value and economic aspects.In fact,at present,applications of these by-products can often be found in feed,fermentation,nutrient extraction and other industries.For example,protein-rich corn gluten can be used as a good animal feed,and corn germ can be used as a raw material for the high-quality edible oil industry.Undoubtedly,increasing utilization means that these by-products will no longer be treated as waste but will be transformed into high value-added products.In this work,the separation process and chemical composition of several main by-products of the corn starch industry is briefly described,and the application in many industrial fields of these by-products over the last ten years are discussed in particular.This review attempts to summarize all aspects of the application and research of these by-products.For the by-products of the corn starch industry,the most promising way is to be utilized in high value and used to produce high value-added products.According to the characteristics of their chemical composition,they have a better application prospect and research significance in the industries directly related to human beings,such as medicine,green food and health care products.In fact,in recent years,some researchers have recognized this and carried out the research.It is clear fromthese studies that the main issues to be faced nowand in the future are how to produce efficiently while maintaining the quality of the product and using it effectively.The retrospective discussions also provide some ideas for other grain and oilseed crops to be fully utilized.展开更多
The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon w...The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation(R 2=0.9562 and R 2=0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R 2=0.9782. In addition certain linear correlations between THMFP, HAAFP and UV 254 (R 2=0.855 and R 2=0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.展开更多
This study was conducted to recover edible bird’s nest(EBN)hydrolysates from different grades of EBN,including the industrial by-products,using enzymatic treatment.The nutrient,physicochemical properties and antioxid...This study was conducted to recover edible bird’s nest(EBN)hydrolysates from different grades of EBN,including the industrial by-products,using enzymatic treatment.The nutrient,physicochemical properties and antioxidant activities of the recovered hydrolysates at different hydrolysis times were evaluated.Results showed that the recovery yield of enzymatic hydrolysis was above 89%for all grades of EBN and the degree of hydrolysis increased over time.Nitrite content(0.321-0.433 mg/L)was below the permissible tolerance level for all samples.Interestingly,the antioxidant activities(DPPH and ABTS scavenging activities and ferric reducing antioxidant powder(FRAP)activity)were significantly higher(P≤0.05)in hydrolysates recovered from EBN by-products(EBNhC and EBNhD)as compared to the high grade EBN hydrolysates(EBNhA and EBNhB).The in-vitro probiotic activity of EBN and its hydrolysates were examined using the probiotic bacterium Lactobacillus plantarum.Evidently,EBN by-products hydrolysate(EBNhD)recorded the highest number of L.plantarum(1.1×1011 CFU/mL),indicating that low grade EBN has the potential as prebiotic material that promotes probiotic activity.This study demonstrated the concept of using EBN by-products hydrolysates for various applications,such as functional ingredients with enhanced bioactivities,to improve its economic value.展开更多
Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cott...Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system.展开更多
Objective To investigate the reduction of chlorination by-products (CBPs) precursors using the fluidized-bed biofdm reactor (FBBR). Methods Reduction of total organic carbon (TOC), ultraviolet absorbance (UV254...Objective To investigate the reduction of chlorination by-products (CBPs) precursors using the fluidized-bed biofdm reactor (FBBR). Methods Reduction of total organic carbon (TOC), ultraviolet absorbance (UV254), tfihalomethane (THM) formation potential (THMFP), haloacetic acid (HAA) formation potential (HAAFP), and ammonia in FBBR were evaluated in detail. Results The reduction of TOC or UV254 was low, on average 12.6% and 4.7%, respectively, while the reduction of THMFP and HAAFP was significant. The reduction of ammonia was 30%-40% even below 3℃, however, it could quickly rise to over 50% above 3℃. Conclusions The FBBR effectively reduces CBPs and ammonia in drinking water even at low temperature and seems to be a very promising and competitive drinking water reactor for polluted surface source waters, especially in China.展开更多
Research results concerned ( 1 ) quantification of pH value and contents of ammonia nitrogen, volatile fatty acids (VFAs), and lactic acid, which were indicators of fermentative quality of corn stover silage and o...Research results concerned ( 1 ) quantification of pH value and contents of ammonia nitrogen, volatile fatty acids (VFAs), and lactic acid, which were indicators of fermentative quality of corn stover silage and other crop by-product silages ; (2) introduction of methods for analyses of fiber content in feeds such as detergent and enzymatic analyses; (3) determination of digestive characteristics in the tureen by artificial digestion trials ( in vitro and in situ ) ; ( 4 ) evaluation of meat productivity and quality by feeding corn stover silage to beef cattle in feeding experiments and; (5) preparation of feed composition and feeding standards for animals in Jilin Province. These results and methods substantially contributed to stabilization of feed supply as well as an increase in the efficiency of meat production, resulting in sustainable development of livestock management in China.展开更多
The high-active bacteria were screened from 8 dominant bacteria obtained from the natural water body,and then the bioaugmentation activated carbon was formed by hydraulic immobilization of the high-active bacteria. Pl...The high-active bacteria were screened from 8 dominant bacteria obtained from the natural water body,and then the bioaugmentation activated carbon was formed by hydraulic immobilization of the high-active bacteria. Plant-scale studies on removal characteristics of disinfection by-products formation potentials (DBPFP) by bioaugmentation activated carbon process were conducted for micro-polluted raw water treatment. The results show that the bioaugmentation activated carbon process has adopted better purification efficiency to THMFP and HAAFP than traditional biological activated carbon process,and that average removal efficiencies of THMFP and HAAFP can reach 35% and 39.7% during the test period,increasing by more than 10% compared with traditional biological activated carbon process. The removal efficiencies of THMFP and HAAFP are stable because of the biodegradation of the high-active bacteria and the adsorption of active carbon. The biodegradability of CHCl3 formation potential is better as compared with that of CHCl2Br and CHClBr2 formation potentials among THMFP,and high removal efficiency of CHCl3formation potential is obtained by bioaugmentation degradation of the high-active bacteria. The biodegradability of HAAFP is better in comparison with that of THMFP,and the chemical properties of HAAFP are propitious to adsorption of activated carbon. Thus,HAAFP is on predominance during the competitive removal process with THMFP.展开更多
This study was carried out to determine the chemical composition and in situ degradability of agro-industrial by-products found in Eritrea. Three categories of by-products were evaluated and were the milling industry ...This study was carried out to determine the chemical composition and in situ degradability of agro-industrial by-products found in Eritrea. Three categories of by-products were evaluated and were the milling industry (wheat bran;WB, short;WS, and middling;WM), brewery (brewers’ dry grain;BDG, hops;BDH, and yeast;BDY) and sesame cakes (sesame cake machine extracted;SCM and manually extracted;SCT). The dry matter (DM) varied between 88.46% in BDY to 92.39% in SCT. The lowest (P < 0.05) crude protein (CP) content was recorded in WM at 10.11% while the highest was from the BDY at 48.20%. The metabolisable energy (ME) value of the agro-industrial by-products ranged from 8.72 to 11.18 MJ per kg DM with the BDH recording the lowest value (P The sesame cakes (SCM and SCT) recorded higher values of 11.17 and 11.18 MJ per kg DM respectively. The SCT recorded the highest ash content at 10.93% followed by BDY at 10.16% with the least being obtained from WM at 2.48%. The ether extract and acid detergent lignin contents were generally low in all cases for all the by-products. Generally, the results indicated that there was no clear pattern in terms of nutrients content amongst the by-products. The in situ DM, organic matter (OM) and CP degradability differed amongst and within the sesame cakes, milling and brewery by-products. The wide variation in chemical composition, DM, OM, CP degradability, and ME obtained from this study offer farmers huge flexibility in formulating rations according to the productive performance of target animals.展开更多
The hydrolysis process for Silver carp by-products was studied. Protein hydrolysate was prepared with proteolytic enzyme, Alcalase. Hydrolysis conditions were optimized by the regression model of three factors five le...The hydrolysis process for Silver carp by-products was studied. Protein hydrolysate was prepared with proteolytic enzyme, Alcalase. Hydrolysis conditions were optimized by the regression model of three factors five levels quadratic rotation perpendicular regressive design. The optimum hydrolysis conditions of hydrolyzing the protein of Silver carp by-products were determined to be concentration of enzyme (E/S) 3.33%, pH 8.54, hydrolyzing temperature 58 ℃, reaction time 90 min, concentration of substrate 8%. Nitrogen recovery was more than 75%.展开更多
XPS and chemical trapping experments with H2, NH3, and CH3I as trapping agents were carried out for studying the adsorption of propylene over MoO3 or r-Bi2MoO6. The results show that the fragmentation of carbon chain ...XPS and chemical trapping experments with H2, NH3, and CH3I as trapping agents were carried out for studying the adsorption of propylene over MoO3 or r-Bi2MoO6. The results show that the fragmentation of carbon chain takes place during the adsorption of propylene through breaking C -C double bond and C-C bond on Mo2+ and the adjacent lattice oxygen, leading to formation of the oxygen- or nitrogen-containing by-products of C1 and C2 species. Diffuse-Reflection Fourier Transform Infrared (DRFTIR) Spectroscopy was used to study the surface species formed during the chemisorption and reaction of propylene over y-Bi2MoO6 at a lower temperature. The results that C1, C2 adspecies were detected by DRFTIR at 175℃ are consistent with the results of XPS and chemical trapping experiments, whlle the results at 50℃ Grasselli et al.展开更多
Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have rev...Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.展开更多
基金funded by the Foundation of State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants(Grant No.SEPKL-EHIAEC-202210)the Foundation of Shanghai Municipal Health Commission(Grant No.202240327)the Key Discipline Project of the Three-year Action Plan for Strengthening Public Health System Construction in Shanghai(2023-2025)(Grant No.GWVI-11.1-38)。
文摘Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study aimed to assess the exposure status of chlorinated DBPs in recreational water and the health risks to employees of large amusement parks.Methods Exposure parameters of employees of three large amusement parks in Shanghai were investigated using a questionnaire.Seven typical chlorinated DBPs in recreational water and spray samples were quantified by gas chromatography,and the health risks to amusement park employees exposed to chlorinated DBPs were evaluated according to the WHO's risk assessment framework.Results Trichloroacetic acid,dibromochloromethane,bromodichloromethane,and dichloroacetic acid were detected predominantly in recreational water.The carcinogenic and non-carcinogenic risks of the five DBPs did not exceed the risk thresholds.In addition,the carcinogenic and non-carcinogenic risks of mixed exposure to DBPs were within the acceptable risk limits.Conclusion Typical DBPs were widely detected in recreational water collected from three large amusement parks in Shanghai;however,the health risks of DBPs and their mixtures were within acceptable limits.
文摘Ensuring the health and safety of drinking water is crucial for both nations and their citizens.Since the 20th century,the disinfection of drinking water,effectively controlling pathogens in water sources,has become one of the significant advances in public health.However,the disinfectants used in the process,such as chlorine and chlorine dioxide,react with natural organic matter in the water to produce disinfection by-products(DBPs).Most of these DBPs contain chlorine,and if the source water contains bromine or iodine,brominated or iodinated DBPs,collectively referred to as Halogenated disinfection byproducts(X-DBPs),are formed.Numerous studies have found that X-DBPs pose potential risks to human health and the environment,leading to widespread concern.Mass spectrometry has become an important means of discovering new types of X-DBPs.This paper focuses on the study of methods for analyzing X-DBPs in drinking water using mass spectrometry.
文摘The world is experiencing a growing shortage of raw materials which is especially severe in the energy sector and being worsened by the unfavorable environmental impact of a consumerist cultttre revolving around the exploitation of non-renewable resources. In this work, the calorific value and chemical composition of liquors resulting from the autohydrolysis of six different lignocellulosic materials was determined (Eucalyptus globulus, Arundo donax, Leucaena diversifolia, Paulownia fortunei, Sunflower stalks and Chamaecytisus proliferus) and was assessed for the obtainment of energy, sugars and other chemical products by using of integral fractionation based on autohydrolysis. Autohydrolysis processes have been considered interesting in the case of timber species studied compared with herbaceous species with variations in the extraction of the xylan fraction at 180℃ between 19.68% for Eucalyptus globulus and 36.79% for Leucaena diversifolia and 200℃ between 57.86% for Paulawniafortunei and 79.13 % for Chamaecytisusproliferus. In general, all materials show a solid fraction "more energy" from the hydrolysis to 200℃ than 180℃ and raw materials. It is interesting as the potential economy valuation of the liquid fractions of the hydrolysis, the solid waste recovery present more energetic profitability.
基金supported by the project of Jiangsu Independent Innovation, China (CX(15)1003-3)the Key Technologies R&D Program of China during the 13th Five Year Plan period (2016YFC0502005)the special project of grass of Tibetan Autonomous Region for the “13th FiveYear” Plan, China
文摘This experiment was conducted to study the effect of molasses on the fermentation characteristics of mixed silage ensiled rice straw and vegetable by-products with alfalfa.Mixture(202 g kg^-1 dry matter(DM))consisting of rice straw,broccoli residue and alfalfa at the ratio of 5:4:1 was ensiled with three experimental treatments:(1)no additives(control);(2)molasses at 2.5%(M1);(3)molasses at 5%(M2)on a fresh matter basis of mixture,respectively.All treatments were packed into laboratory-scale silos,and three silos per treatment were sampled on days 1,3,5,14 and 30.The result showed that the p H value of all mixed silages decreased gradually with the time of ensiling except for the control silage,in which a significant increase(P〈0.05)on day 30 occurred.The lactic acid content increased gradually with the time of ensiling and reached the highest value on day 14,and a marked decrease(P〈0.05)was found in the control silage on day 30.The changes of acetic acid content showed similar pattern with lactic acid content.A trace amount of propionic and butyric acid contents were found in the three mixed silages during the fermentation period.Comparing to the control,M1 and M2 treatments improved the fermentation quality of mixed silages as indicated by higher(P〈0.05)lactic acid contents and lower(P〈0.05)p H and ammonia-N contents.The Flieg points also showed that M1 and M2 silages were well preserved,whereas the control silage had a bad quality.Overall,the findings of this study suggested that adding molasses could improve fermentation quality of mixed silage,and M1 was more suitable for practical application.
基金This work was sponsored by National Natural Science Fundation Committee (No. 50238020).
文摘Objective To introduce a new sequential chlorination disinfection process in which short-term free chlorine and chloramine are sequentially added. Methods Pilot tests of this sequential chlorination were carried out in a drinking water plant. Results The sequential chlorination disinfection process had the same or better efficiency on microbe (including virus) inactivation compared with the free chlorine disinfection process. There seemed to be some synergetic disinfection effect between free chlorine and monochloramine because they attacked different targets. The sequential chlorination disinfection process resulted in 35.7%-77.0% TTHM formation and 36.6%-54.8% THAA5 formation less than the free chlorination process. The poorer the water quality was, the more advantage the sequential chlorination disinfection had over the free chlorination. Conclusion This process takes advantages of free chlorine's quick inactivation of microorganisms and chloramine's low disinfection by-product (DBP) yield and long-term residual effect, allowing simultaneous control of microbes and DBPs in an effective and economic way.
文摘A feeding trial was conducted for 75 d to evaluate the nutritive value of a mixture of animal by-products (MAB) as a possible protein source in diets for juvenile mangrove red snapper, Lutjanus argentimaculatus (mean initial body weight, 30 g). Fish were fed one of five isonitrogenous diets (40% crude protein) replacing 0, 25% (MAB25), 50% (MAB50), 75% (MAB75) and 100% (MAB100) of fish meal protein with similar percentages of MAB. The MAB consisted of 25% cow liver meal, 20% leather meal, 20% meat and bone meal, 15% blood meal, 10% APC (poultry feather meal), 8% poultry manure dried, 1.5% choline and 0.5% chromic oxide. After 75 d of feeding, fish fed with diets MAB50, MAB75 and MABI00 exhibited significantly lower growth performance than that of fish fed with control and MAB25 diets. The optimum level of MAB was estimated to be 23%. Replacement of fish meal by MAB23% showed the following performance: maximum weight gain, 510%; SGR, 2.39% and FCE, 2.83%. The MAB substitution up to 75% of fish meal protein in diets did not show differences in apparent protein digestibility (83.6% for MAB25, 79.2% for MAB50, 78.7% for MAB75) compared with control (83.4%), whereas in MABI00 group digestibility (65.3%) was significantly lower than in other groups. The apparent phosphorus absorption of test diet groups was significantly higher (37.1% for MAB25, 28.5% for MABS0, 55.6% for MAB75 and 54.5% for MABI00) than that of control (1 1.2%). The levels of protein and ash in the whole body, carcass and viscera increased as MAB substitution in diets increased, whereas lipids and moisture remained consistent among all treatment groups. These results showed that approximately 23% of fish meal protein could be replaced by a mixture of animal by-products for juvenile snapper growing from 30 g to 167 g in 75 d without compromising growth performance and feed efficiency.
基金Project(2182040)supported by the Beijing Natural Science Foundation,ChinaProjects(51674026,51974025,U1802253)supported by the National Natural Science Foundation of ChinaProject(FRF-TT-19-001)supported by the Fundamental Research Funds for the Central Universities,China。
文摘An innovative technology,nitric acid pressure leaching of limonitic laterite ores,was proposed by our research team.The HNO3 regeneration is considerable significance for the improvement of the proposed technology and its commercial application,but it has not been systematically investigated.Herein,regenerating HNO3 from Ca(NO3)2 solution with low-cost H2SO4,and simultaneous synthesis of fibrous CaSO4·2H2O by-products were studied.As a theoretical basis,the solubility of CaSO4·2H2O in HNO3 medium is studied.It is concluded that the solubility of CaSO4·2H2O increases with increasing temperature or increasing HNO3 concentration,which has considerable guiding significance for the subsequent experimental research and analysis.Then,the effects of various factors on the residual Ca^2+ concentration of filtrate,the regenerated HNO3 concentration and the morphology of synthesized products are investigated using ICP-AES and SEM.And the effect mechanism is also analyzed.The results indicate the regenerated HNO3 concentration reaches 116 g/L with the residual Ca^2+ concentration being 9.7 g/L at the optimum conditions.Moreover,fibrous CaSO4·2H2O by-products with high aspect ratios(length,406.32μm;diameter,14.71μm;aspect ratio,27.62)can be simultaneously synthesized.
基金Supported by UGC-MRP,New Delhi,India[No.F.No.36-250/2008(SR)24/03/2009]King Saud University,Saudi Arabia,Vice Deanship of Research Chairs:Research Chairs
文摘Objective: To evaluate the ovicidal, larvicidal and adulticidal potential of neem cake fractions of different polarity against the rural malaria vector Anopheles culicifacies(An.culicifacies).Methods: Neem cake fractions' total methanol extract(NTMeOH), total ethyl acetate extract(NTAc OEt), ethyl acetate fraction after repartition with NTMe OH(NRAc OEt),butanol fraction after repartition with NTMeOH(NRBuOH), and aqueous fraction after repartition of NTMeOH(NRH2O) were tested against An. culicifacies eggs, fourth instar larvae and adults.Results: In larvicidal experiments, NTMeOH, NTAcOEt, NRAcOEt, NRBuOH and NRH2O achieved LC50 values of 1.32, 1.50, 1.81, 1.95 and 2.54 mg/L, respectively. All fractions tested at 150 mg/L were able to reduce egg hatchability of more than 50%, with the exception of NTAc OEt and NRAc OEt. In adulticidal assays, NTMeOH, NTAcOEt,NRAcOEt, NRBuOH and NRH2O achieved LC50 values of 3.01, 2.95, 3.23, 3.63 and3.00 mg/L, respectively.Conclusions: Overall, this study suggests that the methanolic fractions of neem cake may be considered as a new and cheap source of highly effective compounds against the rural malaria vector An. culicifacies.
基金The authors gratefully acknowledge the financial support provided by the Doctor Research Fund of Henan University of Technology(2020BS009)Science,Technology and Innovation in the Soybean and its Alternative Crops Chain(SQ2019YFD100114).
文摘Corn is a high starchy cereal crop with the highest production and provides over 85%of the starch produced worldwide.Various by-products,differentiated by technological process features such as steep liquor,corn germ,corn bran,gluten,are created largely during corn starch processing.They are inexpensive,nutrient-rich,and vary widely in chemical composition such as proteins,oils,carbohydrates,and minerals.In an increasingly resource-constrained modern world,the utilization approach of these by-products for non-starch industrial processing is attractive widely considering both nutritive value and economic aspects.In fact,at present,applications of these by-products can often be found in feed,fermentation,nutrient extraction and other industries.For example,protein-rich corn gluten can be used as a good animal feed,and corn germ can be used as a raw material for the high-quality edible oil industry.Undoubtedly,increasing utilization means that these by-products will no longer be treated as waste but will be transformed into high value-added products.In this work,the separation process and chemical composition of several main by-products of the corn starch industry is briefly described,and the application in many industrial fields of these by-products over the last ten years are discussed in particular.This review attempts to summarize all aspects of the application and research of these by-products.For the by-products of the corn starch industry,the most promising way is to be utilized in high value and used to produce high value-added products.According to the characteristics of their chemical composition,they have a better application prospect and research significance in the industries directly related to human beings,such as medicine,green food and health care products.In fact,in recent years,some researchers have recognized this and carried out the research.It is clear fromthese studies that the main issues to be faced nowand in the future are how to produce efficiently while maintaining the quality of the product and using it effectively.The retrospective discussions also provide some ideas for other grain and oilseed crops to be fully utilized.
文摘The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation(R 2=0.9562 and R 2=0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R 2=0.9782. In addition certain linear correlations between THMFP, HAAFP and UV 254 (R 2=0.855 and R 2=0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.
基金funded by the Research Excellence Consortium(Konsortium Kecemerlangan Penyelidikan)(KKP/2020/UKMUKM/5/1)(JPT(BKPI)1000/016/018/25(21))the Fundamental Research Grant Scheme(FRGS/1/2019/WAB01/UKM/02/1)。
文摘This study was conducted to recover edible bird’s nest(EBN)hydrolysates from different grades of EBN,including the industrial by-products,using enzymatic treatment.The nutrient,physicochemical properties and antioxidant activities of the recovered hydrolysates at different hydrolysis times were evaluated.Results showed that the recovery yield of enzymatic hydrolysis was above 89%for all grades of EBN and the degree of hydrolysis increased over time.Nitrite content(0.321-0.433 mg/L)was below the permissible tolerance level for all samples.Interestingly,the antioxidant activities(DPPH and ABTS scavenging activities and ferric reducing antioxidant powder(FRAP)activity)were significantly higher(P≤0.05)in hydrolysates recovered from EBN by-products(EBNhC and EBNhD)as compared to the high grade EBN hydrolysates(EBNhA and EBNhB).The in-vitro probiotic activity of EBN and its hydrolysates were examined using the probiotic bacterium Lactobacillus plantarum.Evidently,EBN by-products hydrolysate(EBNhD)recorded the highest number of L.plantarum(1.1×1011 CFU/mL),indicating that low grade EBN has the potential as prebiotic material that promotes probiotic activity.This study demonstrated the concept of using EBN by-products hydrolysates for various applications,such as functional ingredients with enhanced bioactivities,to improve its economic value.
基金supported by the National Natural Science Foundation of China(32071968)the Jiangsu Agricultural Science and Technology Innovation Fund,China(CX(22)2015))the Jiangsu Collaborative Innovation Center for Modern Crop Production,China。
文摘Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system.
基金This work was supported by National Natural Science Foundation of China (No. 50408006).
文摘Objective To investigate the reduction of chlorination by-products (CBPs) precursors using the fluidized-bed biofdm reactor (FBBR). Methods Reduction of total organic carbon (TOC), ultraviolet absorbance (UV254), tfihalomethane (THM) formation potential (THMFP), haloacetic acid (HAA) formation potential (HAAFP), and ammonia in FBBR were evaluated in detail. Results The reduction of TOC or UV254 was low, on average 12.6% and 4.7%, respectively, while the reduction of THMFP and HAAFP was significant. The reduction of ammonia was 30%-40% even below 3℃, however, it could quickly rise to over 50% above 3℃. Conclusions The FBBR effectively reduces CBPs and ammonia in drinking water even at low temperature and seems to be a very promising and competitive drinking water reactor for polluted surface source waters, especially in China.
基金Supported by Special Fund for Jilin Provincial Science and Technology Development Plan(20160204015ny)Construction of Jilin Modern Agricultural Industry Research System(201637)National Beef Cattle Yak Industry Research System(CARS-38)
文摘Research results concerned ( 1 ) quantification of pH value and contents of ammonia nitrogen, volatile fatty acids (VFAs), and lactic acid, which were indicators of fermentative quality of corn stover silage and other crop by-product silages ; (2) introduction of methods for analyses of fiber content in feeds such as detergent and enzymatic analyses; (3) determination of digestive characteristics in the tureen by artificial digestion trials ( in vitro and in situ ) ; ( 4 ) evaluation of meat productivity and quality by feeding corn stover silage to beef cattle in feeding experiments and; (5) preparation of feed composition and feeding standards for animals in Jilin Province. These results and methods substantially contributed to stabilization of feed supply as well as an increase in the efficiency of meat production, resulting in sustainable development of livestock management in China.
基金Sponsered by the National Natural Science Foundation of China (Grant No. 50678046)
文摘The high-active bacteria were screened from 8 dominant bacteria obtained from the natural water body,and then the bioaugmentation activated carbon was formed by hydraulic immobilization of the high-active bacteria. Plant-scale studies on removal characteristics of disinfection by-products formation potentials (DBPFP) by bioaugmentation activated carbon process were conducted for micro-polluted raw water treatment. The results show that the bioaugmentation activated carbon process has adopted better purification efficiency to THMFP and HAAFP than traditional biological activated carbon process,and that average removal efficiencies of THMFP and HAAFP can reach 35% and 39.7% during the test period,increasing by more than 10% compared with traditional biological activated carbon process. The removal efficiencies of THMFP and HAAFP are stable because of the biodegradation of the high-active bacteria and the adsorption of active carbon. The biodegradability of CHCl3 formation potential is better as compared with that of CHCl2Br and CHClBr2 formation potentials among THMFP,and high removal efficiency of CHCl3formation potential is obtained by bioaugmentation degradation of the high-active bacteria. The biodegradability of HAAFP is better in comparison with that of THMFP,and the chemical properties of HAAFP are propitious to adsorption of activated carbon. Thus,HAAFP is on predominance during the competitive removal process with THMFP.
文摘This study was carried out to determine the chemical composition and in situ degradability of agro-industrial by-products found in Eritrea. Three categories of by-products were evaluated and were the milling industry (wheat bran;WB, short;WS, and middling;WM), brewery (brewers’ dry grain;BDG, hops;BDH, and yeast;BDY) and sesame cakes (sesame cake machine extracted;SCM and manually extracted;SCT). The dry matter (DM) varied between 88.46% in BDY to 92.39% in SCT. The lowest (P < 0.05) crude protein (CP) content was recorded in WM at 10.11% while the highest was from the BDY at 48.20%. The metabolisable energy (ME) value of the agro-industrial by-products ranged from 8.72 to 11.18 MJ per kg DM with the BDH recording the lowest value (P The sesame cakes (SCM and SCT) recorded higher values of 11.17 and 11.18 MJ per kg DM respectively. The SCT recorded the highest ash content at 10.93% followed by BDY at 10.16% with the least being obtained from WM at 2.48%. The ether extract and acid detergent lignin contents were generally low in all cases for all the by-products. Generally, the results indicated that there was no clear pattern in terms of nutrients content amongst the by-products. The in situ DM, organic matter (OM) and CP degradability differed amongst and within the sesame cakes, milling and brewery by-products. The wide variation in chemical composition, DM, OM, CP degradability, and ME obtained from this study offer farmers huge flexibility in formulating rations according to the productive performance of target animals.
基金Heilongjiang Province Science and Technology Key Project
文摘The hydrolysis process for Silver carp by-products was studied. Protein hydrolysate was prepared with proteolytic enzyme, Alcalase. Hydrolysis conditions were optimized by the regression model of three factors five levels quadratic rotation perpendicular regressive design. The optimum hydrolysis conditions of hydrolyzing the protein of Silver carp by-products were determined to be concentration of enzyme (E/S) 3.33%, pH 8.54, hydrolyzing temperature 58 ℃, reaction time 90 min, concentration of substrate 8%. Nitrogen recovery was more than 75%.
基金Supported by the National Natural Science Fundation of China.
文摘XPS and chemical trapping experments with H2, NH3, and CH3I as trapping agents were carried out for studying the adsorption of propylene over MoO3 or r-Bi2MoO6. The results show that the fragmentation of carbon chain takes place during the adsorption of propylene through breaking C -C double bond and C-C bond on Mo2+ and the adjacent lattice oxygen, leading to formation of the oxygen- or nitrogen-containing by-products of C1 and C2 species. Diffuse-Reflection Fourier Transform Infrared (DRFTIR) Spectroscopy was used to study the surface species formed during the chemisorption and reaction of propylene over y-Bi2MoO6 at a lower temperature. The results that C1, C2 adspecies were detected by DRFTIR at 175℃ are consistent with the results of XPS and chemical trapping experiments, whlle the results at 50℃ Grasselli et al.
基金supported by a grant from the Standardization and Integration of Resources Information for Seed-cluster in Hub-Spoke Material Bank Program,Rural Development Administration,Republic of Korea(PJ01587004).
文摘Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.