期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Efficacy of Trifluralin Compared to Ethalfluralin Applied Alone and Co-Applied with Halosulfuron for Weed Management in White Bean 被引量:1
1
作者 Nader Soltani Christy Shropshire Peter H. Sikkema 《Agricultural Sciences》 2020年第9期837-848,共12页
There are a limited number of herbicides registered for weed management in white bean production in Ontario, Canada. Five field experiments were completed in Ontario from 2016 to 2018 to compare the efficacy of triflu... There are a limited number of herbicides registered for weed management in white bean production in Ontario, Canada. Five field experiments were completed in Ontario from 2016 to 2018 to compare the efficacy of trifluralin and ethalfluralin applied alone and in combination with halosulfuron, applied preplant incorporated (PPI), for weed control efficacy and white bean tolerance and seed yield. At 2 and 4 WAE, there was no white bean injury from the herbicide treatments evaluated. Trifluralin applied PPI provided up to 32%, 99%, 13%, 99%, 27%, 99% and 99% control of velvetleaf, redroot pigweed, common ragweed, common lambsquarters, wild mustard, barnyardgrass and green foxtail, respectively. Trifluralin and ethalfluralin provide similar control of velvetleaf, redroot pigweed, barnyardgrass and green foxtail control, however, ethalfluralin is slightly more efficacious on common ragweed, common lambsquarters and wild mustard. Halosulfuron (35 g<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8729;</span></span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8729;</span></span></span>ha<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8722;</span></span>1</sup>), applied PPI, provided as much as 76%, 98%, 96%, 96%, 100%, 19% and 23% control of velvetleaf, redroot pigweed, common ragweed, common lambsquarters, wild mustard, barnyardgrass and green foxtail, respectively. Trifluralin (600 or 1155 g<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8729;</span></span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8729;</span></span></span>ha<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8722;</span></span>1</sup>) + halosulfuron (35 g<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8729;</span></span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8729;</span></span></span>ha<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8722;</span></span>1</sup>), applied PPI, provided up to 88%, 100%, 98%, 100%, 100%, 99% and 98% control of velvetleaf, redroot pigweed, common ragweed, common lambsquarters, wild mustard, barnyardgrass and green foxtail, respectively. Ethalfluralin (810 or 1080 ai<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8729;</span></span></span>ha<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8722;</span></span>1</sup>) + halosulfuron (35 g<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8729;</span></span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8729;</span></span></span>ha<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8722;</span></span>1</sup>) provided similar control. Weed interference decreased white bean seed yield 44% - 45% with trifluralin, 30% - 41% with ethalfluralin and 34% with halosulfuron. However, decreased weed interference with trifluralin and ethalfluralin applied in combination with halosulfuron resulted white bean seed yield that was similar to the weed-free control. Trifluralin or ethalfluralin co-applied with halosulfuron can be safely used in white bean production for the control of common annual grass and broadleaf weeds in Ontario. 展开更多
关键词 ALS Inhibitor Herbicides crop injury Dinitroanaline Herbicides Navy Bean Phaseolus vulgaris Sulfonylurea Herbicides
下载PDF
Response of Four Dry Bean Market Classes to Pre-Emergence Applications of Pyroxasulfone, Sulfentrazone and Pyroxasulfone plus Sulfentrazone 被引量:1
2
作者 Allison N. Taziar Nader Soltani +4 位作者 Christy Shropshire Darren E. Robinson Mitch Long Chris L. Gillard Peter H. Sikkema 《American Journal of Plant Sciences》 2016年第8期1217-1225,共9页
Only one herbicide mode of action (ALS inhibitor) is currently available to Ontario dry bean producers for soil-applied broadleaf weed control. Four field studies were conducted over two years (2014, 2015) to examine ... Only one herbicide mode of action (ALS inhibitor) is currently available to Ontario dry bean producers for soil-applied broadleaf weed control. Four field studies were conducted over two years (2014, 2015) to examine the tolerance of four market classes of dry beans to sulfentrazone (210 and 420 g&middot;ai&middot;ha<sup>-1</sup>) and pyroxasulfone (100 and 200 g&middot;ai&middot;ha<sup>-1</sup>) applied alone and in combination. The registration of these two herbicides would provide Ontario dry bean producers with two additional modes of action for broadleaf weed control. Pyroxasulfone caused up to 23%, 6%, 7% and 10% injury in adzuki, kidney, small red Mexican and white bean, respectively;sulfentrazone caused up to 51%, 12%, 15% and 44% injury and the combination caused up to 90%, 23%, 29% and 62% injury, respectively. Kidney and small red Mexican bean density, height, seed moisture content and yield were not affected. Pyroxasulfone (200 g&middot;ai&middot;ha<sup>-1</sup>) + sulfentrazone (420 g&middot;ai&middot;ha<sup>-1</sup>) reduced adzuki and white bean density, shoot dry weight, height and yield. This study concludes that pyroxasulfone (100 g&middot;ai&middot;ha<sup>-1</sup>) + sulfentrazone (210 g&middot;ai&middot;ha<sup>-1</sup>) applied PRE can be safely used to control weeds in Ontario kidney and small red Mexican bean production. 展开更多
关键词 Adzuki Bean (Erimo) Kidney Bean (Red Hawk) Small Red Mexican Bean (Merlot) White Bean (T9905) crop injury Plant Density Plant Height Seed Moisture Content Tolerance Yield
下载PDF
Glyphosate-Resistant Canada Fleabane Control with Three-Way Herbicide Tankmixes in Soybean
3
作者 Nader Soltani Christy Shropshire Peter H. Sikkema 《American Journal of Plant Sciences》 2020年第9期1478-1486,共9页
Eight field trials (<span style="font-family:Verdana;">2 in 2016, 3 in 2017, 3 in 2018) </span><span style="font-family:Verdana;">were conducted</span><span style="f... Eight field trials (<span style="font-family:Verdana;">2 in 2016, 3 in 2017, 3 in 2018) </span><span style="font-family:Verdana;">were conducted</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> in farmers’ fields with heavy infestations of GR </span><i><span style="font-family:Verdana;">Conyza</span></i><span style="font-family:Verdana;"> <i>canadensis</i></span><span style="font-family:Verdana;"> (Canada fleabane, horseweed or </span><span style="font-family:Verdana;">marestail</span><span style="font-family:Verdana;">) </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">to evaluate glyphosate (900 g ae ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">) plus </span><span style="font-family:Verdana;">saflufenacil</span><span style="font-family:Verdana;"> (25 g ai ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">), 2,4-D ester (500 g ai ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">) or paraquat (1100 g ai ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">) applied </span><span style="font-family:Verdana;">preplant</span><span style="font-family:Verdana;"> (PP) as 2-way </span><span style="font-family:Verdana;">tankmixes</span><span style="font-family:Verdana;">, or in 3-way </span><span style="font-family:Verdana;">tankmixes</span><span style="font-family:Verdana;"> with sulfentrazone (140 g ai ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">), flumioxazin (107 g ai ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">) or metribuzin (400 g ai ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">)</span><span><span style="font-family:Verdana;"> for the glyphosate-resistant (GR) </span><i><span style="font-family:Verdana;">C.</span></i><span style="font-family:Verdana;"> <i><span style="font-family:Verdana;">canadensis</span></i></span><span style="font-family:Verdana;"> control in GR soybean. </span></span><span><span style="font-family:Verdana;">Glyphosate plus </span><span style="font-family:Verdana;">saflufenacil</span><span style="font-family:Verdana;"> applied PP controlled GR </span><i><span style="font-family:Verdana;">C.</span></i><span style="font-family:Verdana;"> <i><span style="font-family:Verdana;">canadensis</span></i></span><span style="font-family:Verdana;"> as much as 90%. The addition of sulfentrazone, flumioxazin </span><span style="font-family:Verdana;">or</span><span style="font-family:Verdana;"> metribuzin to the </span><span style="font-family:Verdana;">tankmix</span><span style="font-family:Verdana;"> provided as much as 93%, 96% </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> 97% control of GR </span><i><span style="font-family:Verdana;">C.</span></i><span style="font-family:Verdana;"> <i><span style="font-family:Verdana;">canadensis</span></i></span><span style="font-family:Verdana;">, respectively. Glyphosate plus 2,4-D ester applied PP provided as much as 59% control of GR </span><i><span style="font-family:Verdana;">C.</span></i><span style="font-family:Verdana;"> <i><span style="font-family:Verdana;">canadensis</span></i></span><span style="font-family:Verdana;">. The addition of sulfentrazone, flumioxazin </span><span style="font-family:Verdana;">or</span><span style="font-family:Verdana;"> metribuzin to the </span><span style="font-family:Verdana;">tankmix</span><span style="font-family:Verdana;"> provided as much as 60%, 5</span></span><span><span style="font-family:Verdana;">9% </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> 91% control of GR </span><i><span style="font-family:Verdana;">C.</span></i><span style="font-family:Verdana;"> <i><span style="font-family:Verdana;">canadensis</span></i></span><span style="font-family:Verdana;">, respectively. Glyphosate plus paraquat applied PP provided as much as 85% control of GR </span><i><span style="font-family:Verdana;">C.</span></i><span style="font-family:Verdana;"> <i><span style="font-family:Verdana;">canadensis</span></i></span><span style="font-family:Verdana;">. The addition of sulfentrazone, flumioxazin </span><span style="font-family:Verdana;">or</span><span style="font-family:Verdana;"> metribuzin to the </span><span style="font-family:Verdana;">tankmix</span><span style="font-family:Verdana;"> provided as much as 88%, 89% </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> 98% control of GR </span><i><span style="font-family:Verdana;">C.</span></i><span style="font-family:Verdana;"> <i><span style="font-family:Verdana;">canadensis</span></i></span><span style="font-family:Verdana;">, respectively. Density and biomass reductions of GR </span><i><span style="font-family:Verdana;">C.</span></i><span style="font-family:Verdana;"> <i><span style="font-family:Verdana;">canadensis</span></i></span><span style="font-family:Verdana;"> with herbicides evaluated followed the same pattern as weed control evaluations. </span><span><span style="font-family:Verdana;">GR </span><i><span style="font-family:Verdana;">C.</span></i><span style="font-family:Verdana;"> <i><span style="font-family:Verdana;">canadensis</span></i></span><span style="font-family:Verdana;"> interference reduced soybean yield 66%. Reduced GR </span><i><span style="font-family:Verdana;">C.</span></i><span style="font-family:Verdana;"> <i><span style="font-family:Verdana;">canadensis</span></i></span><span style="font-family:Verdana;"> interference with the </span><span style="font-family:Verdana;">preplant</span><span style="font-family:Verdana;"> herbicides evaluated provided soybean yield similar to the</span></span></span><span><span><span style="font-family:Verdana;"> weed-free control. Results from this study </span><span style="font-family:Verdana;">show</span><span style="font-family:Verdana;"> that glyphosate plus </span><span style="font-family:Verdana;">saflufenacil</span><span style="font-family:Verdana;">, glyphosate plus 2,4-D ester </span><span style="font-family:Verdana;">or</span><span style="font-family:Verdana;"> glyphosate plus paraquat </span><span style="font-family:Verdana;">tankmixed</span><span style="font-family:Verdana;"> with metribuzin can provide effective control of GR </span><i><span style="font-family:Verdana;">C.</span></i><span style="font-family:Verdana;"> <i><span style="font-family:Verdana;">canadensis</span></i></span><span style="font-family:Verdana;"> in GR soybean.</span></span></span></span> 展开更多
关键词 Biomass crop injury Density FLUMIOXAZIN GLYPHOSATE Herbicide Tankmixture METRIBUZIN Saflufenacil SULFENTRAZONE Yield
下载PDF
Control of Glyphosate-Resistant Marestail in Identity-Preserved or Glyphosate-Resistant and Glyphosate/Dicamba-Resistant Soybean with Preplant Herbicides
4
作者 Nader Soltani Christy Shropshire Peter H. Sikkema 《American Journal of Plant Sciences》 2020年第6期851-860,共10页
Two studies, each consisting of six field experiments were conducted in growers’ fields in 2018 and 2019 to determine the optimal herbicide tankmixes, applied preplant (PP) for the control of glyphosate-resistant<... Two studies, each consisting of six field experiments were conducted in growers’ fields in 2018 and 2019 to determine the optimal herbicide tankmixes, applied preplant (PP) for the control of glyphosate-resistant<b><span style="font-family:Verdana;"> (</span></b><span style="font-family:Verdana;">GR</span><b><span style="font-family:Verdana;">)</span></b><span style="font-family:Verdana;"> marestail in</span><span style="font-family:Verdana;"> 1) identity-preserved and glyphosate-resistant soybean (Study 1) and, 2)</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">glyphosate/dicamba-resistant soybean</span></span><span style="font-family:Verdana;"> (Study 2). </span><span style="font-family:Verdana;">There was no significant injury in soybean with the PP herbicides evaluated in both studies. </span><span style="font-family:Verdana;">In Study 1, at 8 weeks after treatment (WAA), glyphosate + saflufenacil, glyphosate + 2,4-D ester, glyphosate + pyraflufen/2,4-D, glyphosate +, 4-D choline or glyphosate + halauxifen-methyl, applied PP, controlled GR marestail 93%, 58%, 60%, 67% and 71%, respectively</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> The addition of metribuzin to </span><span style="font-family:Verdana;">the tankmixes of glyphosate + </span><span style="font-family:Verdana;">saflufenacil</span><span style="font-family:Verdana;">, 2,4-D ester and pyraflufen/2,4-D increased the control to 98%, 91% and 95%, respectively. The addition of metribuzin + chlorimuron-ethyl to 2,4-D choline/glyphosate and glyphosate + halauxifen-methyl increased the control to 94% and 93%, respectively.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">In Study 2, a</span><span style="font-family:Verdana;">t </span><span style="font-family:Verdana;">8 WAA,</span><span style="font-family:Verdana;"> glyphosate/dicamba</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">applied PP, </span><span style="font-family:Verdana;">controlled GR </span><span style="font-family:Verdana;">m</span><span style="font-family:Verdana;">arestail </span><span style="font-family:Verdana;">89</span><span style="font-family:Verdana;">% in glyphosate/dicamba-resistant soybean. The addition of metribuzin </span><span style="font-family:Verdana;">or </span><span style="font-family:Verdana;">saflufenacil</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">to glyphosate/dicamba </span><span style="font-family:Verdana;">controlled GR marestail 86% and 97%, </span><span style="font-family:Verdana;">respectively. At </span><span style="font-family:Verdana;">8 WAA</span><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">S</span></i><span style="font-family:Verdana;">-metolachlor/dicamba controlled GR </span><span style="font-family:Verdana;">m</span><span style="font-family:Verdana;">arestail</span><span style="font-family:Verdana;"> 83%.</span><span style="font-family:Verdana;"> The addition of metribuzin or saflufenacil to the above </span><span style="font-family:Verdana;">pre</span><span style="font-family:Verdana;">mix controlled GR </span><span style="font-family:Verdana;">m</span><span style="font-family:Verdana;">arestail </span><span style="font-family:Verdana;">87% and 97%</span><span style="font-family:Verdana;">, respectively. </span><span style="font-family:Verdana;">Density and biomass reductions were similar to visible control. </span><span style="font-family:Verdana;">GR </span><span style="font-family:Verdana;">m</span><span style="font-family:Verdana;">arestail interference reduced soybean yield </span><span style="font-family:Verdana;">60% and 53</span><span style="font-family:Verdana;">% in</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Study 1 </span><span style="font-family:Verdana;">and 2, respectively. Reduce</span><span style="font-family:Verdana;">d GR </span><span style="font-family:Verdana;">m</span><span style="font-family:Verdana;">arestail interference with all the herbicide treatments </span><span style="font-family:Verdana;">evaluated in both studies </span><span style="font-family:Verdana;">resulted in soybean yield that was similar to the weed-free control.</span> 展开更多
关键词 Biomass crop injury Density GLYPHOSATE Herbicide Tankmixture METRIBUZIN Saflufenacil Yield
下载PDF
Ground-based hyperspectral remote sensing for weed management in crop production 被引量:3
5
作者 Yanbo Huang Matthew A.Lee +1 位作者 Steven J.Thomson Krishna N.Reddy 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第2期98-109,共12页
Agricultural remote sensing has been developed and applied in monitoring soil,crop growth,weed infestation,insects,diseases and water status in farm fields to provide data and information to guide agricultural managem... Agricultural remote sensing has been developed and applied in monitoring soil,crop growth,weed infestation,insects,diseases and water status in farm fields to provide data and information to guide agricultural management practices.Precision agriculture has been implemented through prescription mapping of crop fields at different scales with the data remotely sensed from space-borne,airborne and ground-based platforms.Ground-based remote sensing techniques offer portability,flexibility and controllability in applications for precision agriculture.In weed management,crop injury from off-target herbicide spray drift and herbicide resistance in weeds are two important issues.For precision weed management,ground-based hyperspectral remote sensing techniques were developed for detection of crop injury from dicamba and differentiation between glyphosate resistant and sensitive weeds.This research presents the techniques for ground-based hyperspectral remote sensing for these two applications.Results illustrate the advantages of ground-based hyperspectral remote sensing for precision weed management. 展开更多
关键词 ground-based remote sensing HYPERSPECTRAL crop injury herbicide resistance precision agriculture
原文传递
Characterizing downwind drift deposition of aerially applied glyphosate using RbCl as tracer 被引量:6
6
作者 Yanbo Huang Claudiane M.Ouellet-Plamondon +1 位作者 Steven J.Thomson Krishna N.Reddy 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第3期31-36,共6页
Rubidium chloride(RbCl)was used as a tracer tank-mixed with active ingredients to profile downwind deposition of aerially applied crop protection and production materials to characterize off-target drift,which helps i... Rubidium chloride(RbCl)was used as a tracer tank-mixed with active ingredients to profile downwind deposition of aerially applied crop protection and production materials to characterize off-target drift,which helps improve spray efficiency and reduce environmental contamination.Mylar sheets were placed on a holder in the field at each sampling station to collect sprayed solution.RbCl tracer was used to assess downwind drift of nozzles mounted on the booms installed and controlled on both sides of an agricultural airplane.The experiment was conducted on a field covered by Bermuda grass(Cynodon dactylon).During the experiment,the airplane was planned to fly three passes with three replications at each of three different altitudes,3.7 m,4.9 m,and 6.1 m for total of 27 flight runs.The results indicated that sampling station location had a significant effect on RbCl concentration.However,application release altitude was not significant to the change of RbCl.Another practical application in the same aerial application system was used to assess crop injury from the off-target drift of aerially applied glyphosate.RbCl concentrations measured from Mylar sheets were correlated with visual injury,plant height,shoot dry weight,leaf chlorophyll content,and shikimate,which were measured from the leaves and plant samples collected.Overall,RbCl is an effective tracer for monitoring spray applications from agricultural aircraft and unmanned aerial vehicles to intensify agriculture output and minimize environmental impact. 展开更多
关键词 Rubidium chloride(RbCl) precision agriculture spray efficiency off-target drift aerial application HERBICIDE crop injury environmental pollution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部