Understanding the effect of human activities on the soil environment is fundamental to understanding global change and sustainable development. In the process of transformation of tropical rain forests and semiarid gr...Understanding the effect of human activities on the soil environment is fundamental to understanding global change and sustainable development. In the process of transformation of tropical rain forests and semiarid grasslands to farmlands, land degradation usually occurs. But the transformation of arid desert landscape to oasis is found to have quite different consequences. Taking an alluvial plain oasis in the north piedmont of the Tianshan Mountains as a case study, we investigate oasis soil properties related to different land-use systems during the transformation of arid desert to oases. Selected land-use systems con- sisted of an annual crop field less than 3 years old, annual crop field 3-6 years old, annual crop field more than 6 years old, perennial crop field less than 4 years old, perennial crop field of 4-6 years old, perennial crop field more than 6 years old, abandoned farmland more than 3 years old, woodland field more than 6 years old, ecological forestation field, natural shrubbery field, desert grass land, and saline or alkaline field. Different land-use systems affect significantly the distribution of sand, silt and clay. Sand content in oasis soil tends to decrease with cultivation years but silt and clay contents tend to be increased in the oasis soils. Soil fertility is higher in the land-use systems under strong human disturbance than under weak human disturbance. Oasis soil nutrients also tend to increase with cultivation years. Soils have a significantly lower salinity in the land-use systems under strong human disturbance than under weak human disturbance. Soil organic matter and nutrients of the annual and perennial crop systems in the oasis tend to increase with cultivation time with the oasis soil acting as a carbon sink. These results show that soils are not degraded and the soil quality is gradually improved under rational land use and scientific management patterns, including uniform exploitation of land resources, effective irrigation systems, sound drainage systems, balanced fertilizer application, crushed straw return to soil and transformation of annual crop fields to perennial ones.展开更多
Soil fertility management (SFM) has important implications for sustaining agricultural development and food self-sufifciency. Better understanding the determinants of farmers’ SFM can be a great help to the adoptio...Soil fertility management (SFM) has important implications for sustaining agricultural development and food self-sufifciency. Better understanding the determinants of farmers’ SFM can be a great help to the adoption of effective SFM practices. Based on a dataset of 315 plots collected from a typical rice growing area of South China, this study applied statistical method and econometric models to examine the impacts of land characteristics on farmers’ SFM practices at plot scale. Main results showed that in general land characteristics affected SFM behaviors. Securer land tenure arrangements facilitated effective practices of SFM through more diversiifed and more soil-friendly cropping pattern choices. Plot size signiifcantly reduced the intensities of phosphorus and potassium fertilizer application. Given other factors, 1 ha increase in plot size might reduce 3.0 kg ha-1 P2O5 and 1.8 kg ha-1 K2O. Plots far from the homestead were paid less attention in terms of both chemical fertilizers and manure applications. Besides, plots with better quality were put more efforts on management by applying more nitrogen and manure, and by planting green manure crops. Signiifcant differences existed in SFM practices between the surveyed villages with different socio-economic conditions. The ifndings are expected to provide important references to the policy-making incentive for improving soil quality and crop productivity.展开更多
The soils of Benin in general and those of the department of Zou, in particular, are highly degraded. This study aimed to evaluate the effectiveness of sustainable land management practices on soil erodibility in two ...The soils of Benin in general and those of the department of Zou, in particular, are highly degraded. This study aimed to evaluate the effectiveness of sustainable land management practices on soil erodibility in two villages in the Plateau of Abomey. Soil samples were collected on plots under Sustainable Land Management (SLM) measures (direct seeding, maize residue management and soybean-cereal rotation) and on their adjacent control. The soil samples were prepared and analyzed in laboratory to determine variables such as soil permeability, organic matter content, and particle size. Soil erodibility was determined as proposed by Wischmeier & Smith. The effect of SLM practices was significant (0.02) on soil permeability. On plots under SLM measurements, soil permeability is higher with an average of 93.97 mm/h at Folly and 82.43 mm/h at Hanagbo. SLM measurements significantly (0.04) added organic matter to the soil. The average organic matter of the plots under SLM measures in Folly varies from 0.73% to 1.39% while it varies from 0.49% to 0.73% in the control plots. In Hanagbo, the average organic matter of the plots under SLM measures varies from 1.86% to 2.48% against 1.41% to 1.66% for the control plots. Regarding soil erodibility, it was found that the influence of SLM measures is significant in both villages. In villages, direct seeding and maize residue management significantly (0.008) reduced soil erodibility compared to their adjacent controls, while the soybean-cereal rotation measure increased soil erodibility compared to plot witnesses. The average soil erodibility of plots under SLM measures varies by 0.21 t⋅h/Mj⋅mm at 0.38 t⋅h/Mj⋅mm in the village of Hanagbo and 0.25 t⋅h/Mj⋅mm at 0.38 t⋅h/Mj⋅mm in the village of Folly. It varies from 0.24 t⋅h/Mj⋅mm at 0.28 t⋅h/Mj⋅mm for the control plots at Hanagbo and 0.31 t⋅h/Mj⋅mm at 0.37 t⋅h/Mj⋅mm in Folly. These practices can therefore be used for the sustainable use of agricultural land.展开更多
Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern w...Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern were studied by using the water balance method. The results suggested that soil water deficit often exists in fields of these areas. From May to June, the amount of water deficit in bare land rises to the maximum (232 8 mm) and falls to the minimum (66 6 mm) from August to September. By comparison, because of crop transpiration, both soil water deficit and dry soil layer in cultivated land are 15 1—40 4 mm more and 20—70 mm deeper respectively than those of bare land. Crops mainly planted in these areas have a relatively weak utilization ability to soil water. Winter wheat has the highest utilization ability to soil water among the crops planted in these areas. The soil water utilization ability of winter wheat is 26 2%—30 6% and winter wheat can use soil water that lies in soil layer below a depth of over 200 cm. Spring corn and millet can only consume soil water with the maximum ability of 13 4% and the deepest layer of 0—50 cm or 0—100cm, which shows that the soil water utilization ability of winter wheat is higher than that of spring crops. After crop is ripe, more than 41% of available soil water remains unused in field. So, increasing soil water storage and improving crop utilization ability to soil water by adopting efficient agrotechnique measures are the main ways for improving agricultural productivity in dry farming areas of Northern China.展开更多
Tree-crop interactions were monitored by measuring tree growth characters of Prosopis cineraria L. and Tecomella undulata L. and yields of Vigna radiata (L) in agroforestry systems in degraded lands of Indian Desert...Tree-crop interactions were monitored by measuring tree growth characters of Prosopis cineraria L. and Tecomella undulata L. and yields of Vigna radiata (L) in agroforestry systems in degraded lands of Indian Desert. Potential competition for resource between the trees and associated crop was analyzed by measuring soil water contents, soil organic matters and NH4-N at different depths of soil layers i.e., 0-25 cm, 25-50 cm and 50-75 cm in the experimental plots. The plots size were 16 m × 18 m (D1), 20 m × 18 m (D2) and 32 m × 18 m (D3) with tree densities of 208, 138 and 104 trees.ha^-1 after June 2002, respectively. Results showed that tree height increased by 3% to 7% during June 2002 to June 2004. Collar diameter increased by 30% and 11% in D1, 23% and 19% in D2 and 18% and 36% in D3 plots, respectively, in P. cineraria and T. undulata in two years period. The increase in crown diameter was 9% to 18% in P. cineraria and 11% to 16% in T. undulata. Tree growth was relatively greater in 2002 than in 2003. Yield of V. radiata increased linearly from D1 to D3 plots. Lowest soil water content at 1 m distance from tree base indicated greater utilization of soil water within the tree rooting zone. Concentrations of soil organic matters and NH4-N were the highest (p〈0.05) in 0-25 cm soil layer. P. cineraria was more beneficial than T. undulata in improving soil conditions and increasing crop yield by 11.1% and thus more suitable for its integration in agricultural land. The yield of agricultural crop increased when density of tree species was appropriate (i.e., optimum tree density), though it varied with tree size and depended upon resource availability. The result indicated bio-economic benefits of optimum density of P. cineraria and T. undulata over traditional practices of maintaining random trees in farming system in arid zones.展开更多
Tree-crop interactions were monitored by measuring tree growth characters of Prosopis cineraria L.and Tecomella undulata L.and yields of Vigna radiata(L) in agroforestry systems in degraded lands of Indian Desert.Pote...Tree-crop interactions were monitored by measuring tree growth characters of Prosopis cineraria L.and Tecomella undulata L.and yields of Vigna radiata(L) in agroforestry systems in degraded lands of Indian Desert.Potential competition for resource between the trees and associated crop was analyzed by measuring soil water contents, soil organic matters and NH4-N at different depths of soil layers i.e., 0-25 cm, 25-50 cm and 50-75 cm in the experimental plots.The plots size were 16 m × 18 m(D1), 20 m × 18 m(D2) and 32 m × 18 m(D3) with tree densities of 208, 138 and 104 trees·ha-1 after June 2002, respectively.Results showed that tree height increased by 3% to 7% during June 2002 to June 2004.Collar diameter increased by 30% and 11% in D1, 23% and 19% in D2 and 18% and 36% in D3 plots, respectively, in P.cineraria and T.undulata in two years period.The increase in crown diameter was 9% to 18% in P.cineraria and 11% to 16% in T.undulata.Tree growth was relatively greater in 2002 than in 2003.Yield of V.radiata increased linearly from D1 to D3 plots.Lowest soil water content at 1 m distance from tree base indicated greater utilization of soil water within the tree rooting zone.Concentrations of soil organic matters and NH4-N were the highest(p<0.05) in 0-25 cm soil layer.P.cineraria was more beneficial than T.undulata in improving soil conditions and increasing crop yield by 11.1% and thus more suitable for its integration in agricultural land.The yield of agricultural crop increased when density of tree species was appropriate(i.e., optimum tree density), though it varied with tree size and depended upon resource availability.The result indicated bio-economic benefits of optimum density of P.cineraria and T.undulata over traditional practices of maintaining random trees in farming system in arid zones.展开更多
The organic matter is an important soil component, due its favorable effects on soil physical and chemical properties and, by consequence, on crop yields. So, the objective of this work was quantify the changes throug...The organic matter is an important soil component, due its favorable effects on soil physical and chemical properties and, by consequence, on crop yields. So, the objective of this work was quantify the changes through the time of soil organic matter in rainfed maize (Zea mays L.) system, in a period of 30 years of continuous crop and in relation to system of natural vegetation system, and also the effects of these changes on the crop yield, in Luvisols soils of State of Campeche, México. In production cycle of 2004, 53 farmer plots in rainfed maize system of different land use time and five sites of forest natural vegetation system were sampled for soil, to quantify physical and chemical properties of soil, and it was taken data about climate, system management and crop yield. The data were analiced by regression analysis, considered the organic matter as function of land use time and factors of soil and management of system, and the crop yield as function of soil organic matter and factors of soil, climate and management of system. The soil organic matter diminished from 5.68% in forest natural vegetation system to 3.59% after 16 - 30 years of cultivation, and the soil annual incorporation of vegetative mulch (weeds and stubble of maize) increased the organic matter from 0.14% after 1 - 5 years to 0.46% after 16 - 30 years of cultivation. Without fertilization, the diminution of soil organic matter caused 907 kg⋅ha−1 less of maize yield, and the fertilization with 200 kg⋅ha−1 of diamonic phosphate (36 kg⋅N⋅ha−1 and 92 kg P2O5 ha−1) increased the maize yield 1224 kg⋅ha−1 after 1 - 5 years and 1421 kg⋅ha−1 after 16 - 30 years of cultivation, but not compensed less maize yield of 711 kg⋅ha−1 due the diminution of soil organic matter.展开更多
基金National Natural Science Foundation of China, No.40671015, No.40711120200 Project of "Western Light of CAS" Related to Eastern Scholar, No.20051048 Acknowledgements We thank Prof. Ian Bishop for the help on improving English.
文摘Understanding the effect of human activities on the soil environment is fundamental to understanding global change and sustainable development. In the process of transformation of tropical rain forests and semiarid grasslands to farmlands, land degradation usually occurs. But the transformation of arid desert landscape to oasis is found to have quite different consequences. Taking an alluvial plain oasis in the north piedmont of the Tianshan Mountains as a case study, we investigate oasis soil properties related to different land-use systems during the transformation of arid desert to oases. Selected land-use systems con- sisted of an annual crop field less than 3 years old, annual crop field 3-6 years old, annual crop field more than 6 years old, perennial crop field less than 4 years old, perennial crop field of 4-6 years old, perennial crop field more than 6 years old, abandoned farmland more than 3 years old, woodland field more than 6 years old, ecological forestation field, natural shrubbery field, desert grass land, and saline or alkaline field. Different land-use systems affect significantly the distribution of sand, silt and clay. Sand content in oasis soil tends to decrease with cultivation years but silt and clay contents tend to be increased in the oasis soils. Soil fertility is higher in the land-use systems under strong human disturbance than under weak human disturbance. Oasis soil nutrients also tend to increase with cultivation years. Soils have a significantly lower salinity in the land-use systems under strong human disturbance than under weak human disturbance. Soil organic matter and nutrients of the annual and perennial crop systems in the oasis tend to increase with cultivation time with the oasis soil acting as a carbon sink. These results show that soils are not degraded and the soil quality is gradually improved under rational land use and scientific management patterns, including uniform exploitation of land resources, effective irrigation systems, sound drainage systems, balanced fertilizer application, crushed straw return to soil and transformation of annual crop fields to perennial ones.
基金partly funded by the National Natural Science Foundation of China (71273268)
文摘Soil fertility management (SFM) has important implications for sustaining agricultural development and food self-sufifciency. Better understanding the determinants of farmers’ SFM can be a great help to the adoption of effective SFM practices. Based on a dataset of 315 plots collected from a typical rice growing area of South China, this study applied statistical method and econometric models to examine the impacts of land characteristics on farmers’ SFM practices at plot scale. Main results showed that in general land characteristics affected SFM behaviors. Securer land tenure arrangements facilitated effective practices of SFM through more diversiifed and more soil-friendly cropping pattern choices. Plot size signiifcantly reduced the intensities of phosphorus and potassium fertilizer application. Given other factors, 1 ha increase in plot size might reduce 3.0 kg ha-1 P2O5 and 1.8 kg ha-1 K2O. Plots far from the homestead were paid less attention in terms of both chemical fertilizers and manure applications. Besides, plots with better quality were put more efforts on management by applying more nitrogen and manure, and by planting green manure crops. Signiifcant differences existed in SFM practices between the surveyed villages with different socio-economic conditions. The ifndings are expected to provide important references to the policy-making incentive for improving soil quality and crop productivity.
文摘The soils of Benin in general and those of the department of Zou, in particular, are highly degraded. This study aimed to evaluate the effectiveness of sustainable land management practices on soil erodibility in two villages in the Plateau of Abomey. Soil samples were collected on plots under Sustainable Land Management (SLM) measures (direct seeding, maize residue management and soybean-cereal rotation) and on their adjacent control. The soil samples were prepared and analyzed in laboratory to determine variables such as soil permeability, organic matter content, and particle size. Soil erodibility was determined as proposed by Wischmeier & Smith. The effect of SLM practices was significant (0.02) on soil permeability. On plots under SLM measurements, soil permeability is higher with an average of 93.97 mm/h at Folly and 82.43 mm/h at Hanagbo. SLM measurements significantly (0.04) added organic matter to the soil. The average organic matter of the plots under SLM measures in Folly varies from 0.73% to 1.39% while it varies from 0.49% to 0.73% in the control plots. In Hanagbo, the average organic matter of the plots under SLM measures varies from 1.86% to 2.48% against 1.41% to 1.66% for the control plots. Regarding soil erodibility, it was found that the influence of SLM measures is significant in both villages. In villages, direct seeding and maize residue management significantly (0.008) reduced soil erodibility compared to their adjacent controls, while the soybean-cereal rotation measure increased soil erodibility compared to plot witnesses. The average soil erodibility of plots under SLM measures varies by 0.21 t⋅h/Mj⋅mm at 0.38 t⋅h/Mj⋅mm in the village of Hanagbo and 0.25 t⋅h/Mj⋅mm at 0.38 t⋅h/Mj⋅mm in the village of Folly. It varies from 0.24 t⋅h/Mj⋅mm at 0.28 t⋅h/Mj⋅mm for the control plots at Hanagbo and 0.31 t⋅h/Mj⋅mm at 0.37 t⋅h/Mj⋅mm in Folly. These practices can therefore be used for the sustainable use of agricultural land.
文摘Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern were studied by using the water balance method. The results suggested that soil water deficit often exists in fields of these areas. From May to June, the amount of water deficit in bare land rises to the maximum (232 8 mm) and falls to the minimum (66 6 mm) from August to September. By comparison, because of crop transpiration, both soil water deficit and dry soil layer in cultivated land are 15 1—40 4 mm more and 20—70 mm deeper respectively than those of bare land. Crops mainly planted in these areas have a relatively weak utilization ability to soil water. Winter wheat has the highest utilization ability to soil water among the crops planted in these areas. The soil water utilization ability of winter wheat is 26 2%—30 6% and winter wheat can use soil water that lies in soil layer below a depth of over 200 cm. Spring corn and millet can only consume soil water with the maximum ability of 13 4% and the deepest layer of 0—50 cm or 0—100cm, which shows that the soil water utilization ability of winter wheat is higher than that of spring crops. After crop is ripe, more than 41% of available soil water remains unused in field. So, increasing soil water storage and improving crop utilization ability to soil water by adopting efficient agrotechnique measures are the main ways for improving agricultural productivity in dry farming areas of Northern China.
文摘Tree-crop interactions were monitored by measuring tree growth characters of Prosopis cineraria L. and Tecomella undulata L. and yields of Vigna radiata (L) in agroforestry systems in degraded lands of Indian Desert. Potential competition for resource between the trees and associated crop was analyzed by measuring soil water contents, soil organic matters and NH4-N at different depths of soil layers i.e., 0-25 cm, 25-50 cm and 50-75 cm in the experimental plots. The plots size were 16 m × 18 m (D1), 20 m × 18 m (D2) and 32 m × 18 m (D3) with tree densities of 208, 138 and 104 trees.ha^-1 after June 2002, respectively. Results showed that tree height increased by 3% to 7% during June 2002 to June 2004. Collar diameter increased by 30% and 11% in D1, 23% and 19% in D2 and 18% and 36% in D3 plots, respectively, in P. cineraria and T. undulata in two years period. The increase in crown diameter was 9% to 18% in P. cineraria and 11% to 16% in T. undulata. Tree growth was relatively greater in 2002 than in 2003. Yield of V. radiata increased linearly from D1 to D3 plots. Lowest soil water content at 1 m distance from tree base indicated greater utilization of soil water within the tree rooting zone. Concentrations of soil organic matters and NH4-N were the highest (p〈0.05) in 0-25 cm soil layer. P. cineraria was more beneficial than T. undulata in improving soil conditions and increasing crop yield by 11.1% and thus more suitable for its integration in agricultural land. The yield of agricultural crop increased when density of tree species was appropriate (i.e., optimum tree density), though it varied with tree size and depended upon resource availability. The result indicated bio-economic benefits of optimum density of P. cineraria and T. undulata over traditional practices of maintaining random trees in farming system in arid zones.
文摘Tree-crop interactions were monitored by measuring tree growth characters of Prosopis cineraria L.and Tecomella undulata L.and yields of Vigna radiata(L) in agroforestry systems in degraded lands of Indian Desert.Potential competition for resource between the trees and associated crop was analyzed by measuring soil water contents, soil organic matters and NH4-N at different depths of soil layers i.e., 0-25 cm, 25-50 cm and 50-75 cm in the experimental plots.The plots size were 16 m × 18 m(D1), 20 m × 18 m(D2) and 32 m × 18 m(D3) with tree densities of 208, 138 and 104 trees·ha-1 after June 2002, respectively.Results showed that tree height increased by 3% to 7% during June 2002 to June 2004.Collar diameter increased by 30% and 11% in D1, 23% and 19% in D2 and 18% and 36% in D3 plots, respectively, in P.cineraria and T.undulata in two years period.The increase in crown diameter was 9% to 18% in P.cineraria and 11% to 16% in T.undulata.Tree growth was relatively greater in 2002 than in 2003.Yield of V.radiata increased linearly from D1 to D3 plots.Lowest soil water content at 1 m distance from tree base indicated greater utilization of soil water within the tree rooting zone.Concentrations of soil organic matters and NH4-N were the highest(p<0.05) in 0-25 cm soil layer.P.cineraria was more beneficial than T.undulata in improving soil conditions and increasing crop yield by 11.1% and thus more suitable for its integration in agricultural land.The yield of agricultural crop increased when density of tree species was appropriate(i.e., optimum tree density), though it varied with tree size and depended upon resource availability.The result indicated bio-economic benefits of optimum density of P.cineraria and T.undulata over traditional practices of maintaining random trees in farming system in arid zones.
文摘The organic matter is an important soil component, due its favorable effects on soil physical and chemical properties and, by consequence, on crop yields. So, the objective of this work was quantify the changes through the time of soil organic matter in rainfed maize (Zea mays L.) system, in a period of 30 years of continuous crop and in relation to system of natural vegetation system, and also the effects of these changes on the crop yield, in Luvisols soils of State of Campeche, México. In production cycle of 2004, 53 farmer plots in rainfed maize system of different land use time and five sites of forest natural vegetation system were sampled for soil, to quantify physical and chemical properties of soil, and it was taken data about climate, system management and crop yield. The data were analiced by regression analysis, considered the organic matter as function of land use time and factors of soil and management of system, and the crop yield as function of soil organic matter and factors of soil, climate and management of system. The soil organic matter diminished from 5.68% in forest natural vegetation system to 3.59% after 16 - 30 years of cultivation, and the soil annual incorporation of vegetative mulch (weeds and stubble of maize) increased the organic matter from 0.14% after 1 - 5 years to 0.46% after 16 - 30 years of cultivation. Without fertilization, the diminution of soil organic matter caused 907 kg⋅ha−1 less of maize yield, and the fertilization with 200 kg⋅ha−1 of diamonic phosphate (36 kg⋅N⋅ha−1 and 92 kg P2O5 ha−1) increased the maize yield 1224 kg⋅ha−1 after 1 - 5 years and 1421 kg⋅ha−1 after 16 - 30 years of cultivation, but not compensed less maize yield of 711 kg⋅ha−1 due the diminution of soil organic matter.