Sepsis poses a serious threat to health of children in pediatric intensive care unit.The mortality from pediatric sepsis can be effectively reduced through in-time diagnosis and therapeutic intervention.The bacillicul...Sepsis poses a serious threat to health of children in pediatric intensive care unit.The mortality from pediatric sepsis can be effectively reduced through in-time diagnosis and therapeutic intervention.The bacilliculture detection method is too time-consuming to receive timely treatment.In this research,we propose a new framework:a deep encoding network with cross features(CF-DEN)that enables accurate early detection of sepsis.Cross features are automatically constructed via the gradient boosting decision tree and distilled into the deep encoding network(DEN)we designed.The DEN is aimed at learning sufficiently effective representation from clinical test data.Each layer of the DEN fltrates the features involved in computation at current layer via attention mechanism and outputs the current prediction which is additive layer by layer to obtain the embedding feature at last layer.The framework takes the advantage of tree-based method and neural network method to extract effective representation from small clinical dataset and obtain accurate prediction in order to prompt patient to get timely treatment.We evaluate the performance of the framework on the dataset collected from Shanghai Children's Medical Center.Compared with common machine learning methods,our method achieves the increase on F1-score by 16.06%on the test set.展开更多
Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Trans...Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance.展开更多
文摘Sepsis poses a serious threat to health of children in pediatric intensive care unit.The mortality from pediatric sepsis can be effectively reduced through in-time diagnosis and therapeutic intervention.The bacilliculture detection method is too time-consuming to receive timely treatment.In this research,we propose a new framework:a deep encoding network with cross features(CF-DEN)that enables accurate early detection of sepsis.Cross features are automatically constructed via the gradient boosting decision tree and distilled into the deep encoding network(DEN)we designed.The DEN is aimed at learning sufficiently effective representation from clinical test data.Each layer of the DEN fltrates the features involved in computation at current layer via attention mechanism and outputs the current prediction which is additive layer by layer to obtain the embedding feature at last layer.The framework takes the advantage of tree-based method and neural network method to extract effective representation from small clinical dataset and obtain accurate prediction in order to prompt patient to get timely treatment.We evaluate the performance of the framework on the dataset collected from Shanghai Children's Medical Center.Compared with common machine learning methods,our method achieves the increase on F1-score by 16.06%on the test set.
基金supported by the National Key R&D Program of China(2018AAA0102100)the National Natural Science Foundation of China(No.62376287)+3 种基金the International Science and Technology Innovation Joint Base of Machine Vision and Medical Image Processing in Hunan Province(2021CB1013)the Key Research and Development Program of Hunan Province(2022SK2054)the Natural Science Foundation of Hunan Province(No.2022JJ30762,2023JJ70016)the 111 Project under Grant(No.B18059).
文摘Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance.