Double differential cross section (DDCS) of First-Born approximation is calcu-lated for the ionization of metastable 3d-state hydrogen atoms by electron impact energy at 150 eV and 250 eV. A multiple scattering theory...Double differential cross section (DDCS) of First-Born approximation is calcu-lated for the ionization of metastable 3d-state hydrogen atoms by electron impact energy at 150 eV and 250 eV. A multiple scattering theory is applied in the present study. The present results are compared with the other related the-oretical results for the ionization of hydrogen atoms from different metastable states and ground-state experimental results. The findings demonstrate a strong qualitative agreement with the existing results. The obtained results have an extensive scope for further study of such an ionization process.展开更多
We used the close-coupling optical (CCO) approach to investigate the open-shell carbon atom. The elastic cross sections have been presented at the energies below 90eV, and the present CCO results have been compared ...We used the close-coupling optical (CCO) approach to investigate the open-shell carbon atom. The elastic cross sections have been presented at the energies below 90eV, and the present CCO results have been compared with other theoretical results. We found that polarization and the continuum states have significant contributions to the elastic cross sections. The present calculations show that the CCO method is capable of calculating electron scattering from open-shell atoms.展开更多
Oscillator strengths and cross sections of the valence-shell excitations in NO_(2)are of great significance in testing the theoretical calculations and monitoring the state of the ozone layer in the earth’s atmospher...Oscillator strengths and cross sections of the valence-shell excitations in NO_(2)are of great significance in testing the theoretical calculations and monitoring the state of the ozone layer in the earth’s atmosphere. In the present work, the generalized oscillator strengths of the valence-shell excitations in NO_(2)were obtained based on the fast electron scattering technique at an incident electron energy of 1.5 ke V and an energy resolution of about 70 me V. By extrapolating the generalized oscillator strengths to the limit of a zero squared momentum transfer, the optical oscillator strengths for the dipole-allowed transitions have been obtained, which provide an independent cross check to the previous experimental results. Based on the BE-scaling method, the corresponding integral cross sections have also been derived systematically from the excitation threshold to 5000 eV. The present dynamic parameters can provide the fundamental spectroscopic data of NO_(2)and have important applications in the studies of atmospheric science. The datasets presented in this paper, including the GOSs, OOSs and ICSs, are openly available at https://doi.org/10.57760/sciencedb.j00113.00156.展开更多
A complex optical model potential modified by incorporating the concept of bonded atom, which takes into consideration the overlapping effect of electron clouds between atoms in a molecule, is firstly employed to calc...A complex optical model potential modified by incorporating the concept of bonded atom, which takes into consideration the overlapping effect of electron clouds between atoms in a molecule, is firstly employed to calculate the absolute differential, elastic integrated and moment transfer cross sections for electron scattering by OCS over the incident energy range from 200 to 1000 eV using the additivity rule model at Hartree-Fock level. The calculated results are compared with those obtained by experiment and other theories wherever available, and good agreement is obtained over a wide energy range. It is shown that the additivity rule model together with the modified potential is completely suitable for calculating the absolute differential, elastic integrated and moment transfer cross sections of electron scattering by molecules such as OCS.展开更多
We investigate the differential cross sections (DCS) of elastic electron scattering from CH4, CF4 and SF6 at six impact energies in a range of 100 700eV by employing the independent atom model (IAM) together with ...We investigate the differential cross sections (DCS) of elastic electron scattering from CH4, CF4 and SF6 at six impact energies in a range of 100 700eV by employing the independent atom model (IAM) together with the relativistic partial waves. The atom is present in an optical potential which is complex, spherically symmetric, and energy dependent. The optical potential of the atom is the sum of the direct static, dynamic polarization, local exchange and modified absorption potentials. The results obtained by using a modified absorption potential show significant improvements on the unmodified absorption potential results. The present results are generally in good agreement with experimental data available. In addition, the present results indicate that the structure of molecule manifests the observable effects on electron- molecule scattering.展开更多
The original additivity rule method cannot give good results for electron scattering from SO,SO2,SO2Cl2,SO2ClF,and SO2F2 molecules at low energy,because the electron-molecule scattering is simply reduced to electron-a...The original additivity rule method cannot give good results for electron scattering from SO,SO2,SO2Cl2,SO2ClF,and SO2F2 molecules at low energy,because the electron-molecule scattering is simply reduced to electron-atom scattering.Considering the difference between the bound atom in a molecule and the corresponding free atom,the original additivity rule is revised.With the revised additivity rule,the total cross sections for electron scattering from these molecules are calculated over a wide energy range below 3000 eV and compared with the available experimental and theoretical data.A better agreement between them is obtained.展开更多
The additivity rule for electron-molecule scattering is revised by considering the difference between the free atom and the bound atom in the molecule. The total cross sections for electron scattering from fluorometha...The additivity rule for electron-molecule scattering is revised by considering the difference between the free atom and the bound atom in the molecule. The total cross sections for electron scattering from fluoromethanes (CF4, CF3H, CF2H2, and CFH3) are calculated in an energy range from 100 eV to 1500 eV by the revised additivity rule. The present calculations are compared with the original additivity rule results and the available experimental data. Better agreement with each other is obtained.展开更多
A final state wave function of multiple scattering theory developed by Das and seal is utilized in the present study to calculate the triple differential cross sections (TDCS) for the ionization of metastable 3S state...A final state wave function of multiple scattering theory developed by Das and seal is utilized in the present study to calculate the triple differential cross sections (TDCS) for the ionization of metastable 3S state hydrogen atoms at incident electron energy of 250 eV with the exchange effects in the asymmetric coplanar geometry for various kinematic conditions. Our present calculation results are compared with the available hydrogenic ground state experimental data and other existing theoretical results. A good qualitative agreement is shown with those of compared results of the present study specifically with hydrogenic ground state experimental data and metastable 2S and 2P state with exchange effect results. These new results offer an extensive scope for experimental verification in such ionization process.展开更多
A complex optical model potential modified by incorporating the concept of bonded atom, which takes into consideration the overlapping effect of electron clouds between two atoms in a molecule, is first employed to ca...A complex optical model potential modified by incorporating the concept of bonded atom, which takes into consideration the overlapping effect of electron clouds between two atoms in a molecule, is first employed to calculate the total cross sections for electrons scattering from such complex molecules as C2H6, C2F6, C6H6 and C6F6 using the aclditivity rule model at Hartree-Fock level over the energy range from 100 eV to 5000 eV. The total cross sections are quantitatively compared with those obtained by experiments wherever available, and they are in good agreement with each other over a wide energy range. It is shown that the modified potential together with the additivity rule model is completely suitable for the calculation of total cross sections of electrons scattering from such complex molecules as C2H6, C2F6, C6H6 and C6F6 above 200 eV-300 eV.展开更多
Taking into consideration the changes of the geometric shielding effect in a molecule as the energy of incident electrons varies, this paper presents an empirical fraction, which depends on the energy of incident elec...Taking into consideration the changes of the geometric shielding effect in a molecule as the energy of incident electrons varies, this paper presents an empirical fraction, which depends on the energy of incident electrons, the target's molecular dimension and the atomic and electronic numbers in the molecule. Using this empirical fraction, it proposes a new formulation of the additivity rule. Employing the new additivity rule, it calculates the total cross sections of electron scattering by C2H4, C6H6, C6H14 and C8H18 over the energy range from 50 to 5000eV. In order to exclude the calculation deviations caused by solving the radial Schrodinger equation of electron scattering by atoms, here the atomic cross sections are derived from the experimental total cross section results of simple molecules (H2, O2, CO) via the inversion algorithm. The quantitative total cross sections are compared with those obtained by experiments and other theories, and good agreement is obtained over a wide energy range, even at energy of several tens of eV.展开更多
We report elastic cross sections for low-energy electron scattering with formamide-(H_(2)O)n complexes(n=1,2)in the energy region of 0.01-8 eV.The scattering calculations are performed using the R-matrix method in the...We report elastic cross sections for low-energy electron scattering with formamide-(H_(2)O)n complexes(n=1,2)in the energy region of 0.01-8 eV.The scattering calculations are performed using the R-matrix method in the static-exchange(SE)approximation.We consider three structures of formamide-H_(2)O and six structures of formamide-(H_(2)O)_(2)in the present work.Our purpose is to investigate effects of water molecules hydrogen-bonding to formamide.We focus on the influence of microsolvation on theπ*andσ*resonances of formamide.The scattering result for complexes shows that the position ofπ*resonance appears at lower or higher energies in the cluster than in the isolated formamide depending on the complex structure and the water role in the hydrogen bonding.We explain this behavior according to the net charge of the solute.It is found that the microsolvation environment has a substantial effect on the width ofπ*resonance.Our results indicate that surrounding water molecules may affect the lifetime of the resonances,and hence the process is driven by the anion state,such as the dissociative electron attachment.展开更多
First Born triple differential cross sections (TDCS) for ionization of metastable 3P-state hydrogen atoms by electrons are calculated for various kinematic conditions in the asymmetric coplanar geometry. A multiple sc...First Born triple differential cross sections (TDCS) for ionization of metastable 3P-state hydrogen atoms by electrons are calculated for various kinematic conditions in the asymmetric coplanar geometry. A multiple scattering theory is used in this study. The present results are compared with other existing related theoretical results for ionizations of hydrogen atoms from metastable 2S-state and 2P-state, showing a good qualitative agreement. There is no available theoretical study for ionization of metastable 3P-state hydrogen atoms by electrons. We are expecting that the present results provide a wide scope for further study of such ionization problems.展开更多
Electron-impact excitation integral cross sections play an important role in understanding the energy transfer processes in many applied physics. Practical applications require integral cross sections in a wide collis...Electron-impact excitation integral cross sections play an important role in understanding the energy transfer processes in many applied physics. Practical applications require integral cross sections in a wide collision energy range from the excitation threshold to several ke V. The recently developed BE-scaling method is able to meet the demands of integral cross sections for dipole-allowed transitions while the prerequisite relies on the accurate generalized oscillator strengths. Fast electron and x-ray scatterings are the conventional experimental techniques to approach the generalized oscillator strengths,and the joint study by both methods can provide credible cross-checks. The validated generalized oscillator strengths can then be used to extrapolate optical oscillator strengths by fitting the data with the Lassettre formula. The fitted curve also enables the integration of generalized oscillator strengths over the whole momentum transfer region to obtain the BE-scaled integral excitation cross sections. Here, experimental measurements by both fast electron and x-ray scattering of argon and carbon dioxide are reviewed. The integral cross sections for some low-lying states are derived from the cross-checked generalized oscillator strengths for the first time. The integral cross sections presented in this paper are openly available at https://doi.org/10.11922/sciencedb.01466.展开更多
In this work, the elastic cross section is calculated at energies above the Coulomb barrier for 3He + 58Ni using a Woods-Saxon potential. The solutions of the radial Schrödinger equations are calculated numer...In this work, the elastic cross section is calculated at energies above the Coulomb barrier for 3He + 58Ni using a Woods-Saxon potential. The solutions of the radial Schrödinger equations are calculated numerically and they are introduced in the S matrix, after which the cross section is obtained. The parameters in the potential are adjusted to satisfy known experimental data.展开更多
The differential elastic and inelastic scattering neutron cross sections of <sup>12</sup>C atE<sub>n</sub>=14.7 MeV produced by the T(d,n)<sup>4</sup>He reaction were measured usi...The differential elastic and inelastic scattering neutron cross sections of <sup>12</sup>C atE<sub>n</sub>=14.7 MeV produced by the T(d,n)<sup>4</sup>He reaction were measured using an associatedparticle fast neutron TOF spectrometer at 15 angles ranging from 15° to 130°.Theflight path was 2.54 m.The neutron detector consisting of an ST-451 liquid scintillatorwas massively shielded.展开更多
Triple differential cross sections (TDCS) are estimated for the ionization of metastable 3d-state hydrogen atoms by electron at 250 eV for various kinematic conditions pursuing a multiple scattering theory. The presen...Triple differential cross sections (TDCS) are estimated for the ionization of metastable 3d-state hydrogen atoms by electron at 250 eV for various kinematic conditions pursuing a multiple scattering theory. The present new results are compared with the theoretical results of hydrogenic different metastable states as well as the hydrogenic ground state experimental data. Obtained new finding results are in good qualitative agreement with those of compared theories. The present results give an immense opportunity for experimental trial in the field of ionization problems.展开更多
We present a systematic study of 6Li elastic scattering and total reaction cross sections at incident energies around the Coulomb barrier within the continuum discretized coupled-channels(CDCC)framework,where 6Li is t...We present a systematic study of 6Li elastic scattering and total reaction cross sections at incident energies around the Coulomb barrier within the continuum discretized coupled-channels(CDCC)framework,where 6Li is treated in anα+d two-body model.Collisions with 27Al,64Zn,138Ba,and 208Pa are analyzed.The microscopic optical potentials(MOP)based on Skyrme nucleon-nucleon interaction forαand d are adopted in CDCC calculations and satisfactory agreement with the experimental data is obtained without any adjustment on MOPs.For comparison,αand d global phenomenological optical potentials(GOP)are also used in CDCC analysis and a reduction of no less than 50%on the surface imaginary part of deuteron GOP is required for describing the data.In all cases,the 6Li breakup effect is significant and provides repulsive correction to the folding model potential.The reduction on the surface imaginary part of GOP of deuteron reveals a strong suppression of the reaction probability of deuteron as a component of 6Li when compared with that of a free deuteron.Further investigation is performed by considering the d breakup process equivalently within the dynamic polarization potential approach,and the results show that d behaves in a manner similar to a tightly bound nucleus in 6Li induced reactions.展开更多
The elastic scattering properties for collisions between cold and ultracold 39K atoms in a triplet state are investigated. Based on the recent theoretical and experimental results, the improved hybrid potential is pre...The elastic scattering properties for collisions between cold and ultracold 39K atoms in a triplet state are investigated. Based on the recent theoretical and experimental results, the improved hybrid potential is presented for a triplet α3∑u^+ ground state of K2. Our calculated value of the s-wave scattering length a by using the Numerov method for the triplet state is 79.578α0 and found to be in good agreement with the previous ones. The numbers of bound states are supported by the molecular potential. Pronounced shape resonances appear for the l = 3 partial waves for the α3∑u^+ state. Furthermore, the s-wave scattering cross section, the total cross section and energy positions of shape resonances for the α3∑u^+ state are calculated.展开更多
Laser-induced electron diffraction(LIED), in which elastic scattering of the returning electron with the parent ion takes place, has been used to extract atomic potential and image molecular structures with sub-?A ...Laser-induced electron diffraction(LIED), in which elastic scattering of the returning electron with the parent ion takes place, has been used to extract atomic potential and image molecular structures with sub-?A precision and exposure time of a few femtoseconds. So far, the polarization and exchange effects have not been taken into account in the theoretical calculation of differential cross section(DCS) for the laser-induced rescattering processes. However, the validity of this theoretical treatment has never been verified. In this work, we investigate the polarization and exchange effects on electron impact elastic scattering with rare gas atoms and ions. It is found that, while the exchange effect generally plays a more important role than the polarization effect in the elastic scattering process, the exchange effect is less important on electron–ion collisions than on electron–atom collisions, especially for scattering in backward direction. In addition, our calculations show that, for electron–atom collisions at incident energies above 50 e V, both the polarization and exchange effects can be safely neglected, while for electron–ion collisions, both the polarization and exchange potentials do not make substantial contributions to the DCS at incident energies above 20 e V and scattering angles larger than 90?. Our investigation confirms the validity of the current LIED method.展开更多
This paper theoretically studies the elastic scattering properties in a mixture of 6Li and 7Li atoms at cold and ultracold temperatures. Based on the constructed accurate interatomic potential of the triplet state for...This paper theoretically studies the elastic scattering properties in a mixture of 6Li and 7Li atoms at cold and ultracold temperatures. Based on the constructed accurate interatomic potential of the triplet state for 6Li7Li mixture by the mass scaling method, it calculates the interspecies s-wave scattering lengths and the p-wave scattering lengths by the variable phase method and the semiclassical method, respectively. The scattering length is in good agreement with the experiment. The partial-wave and total cross sections are also calculated and a rich resonance structure is found.展开更多
文摘Double differential cross section (DDCS) of First-Born approximation is calcu-lated for the ionization of metastable 3d-state hydrogen atoms by electron impact energy at 150 eV and 250 eV. A multiple scattering theory is applied in the present study. The present results are compared with the other related the-oretical results for the ionization of hydrogen atoms from different metastable states and ground-state experimental results. The findings demonstrate a strong qualitative agreement with the existing results. The obtained results have an extensive scope for further study of such an ionization process.
基金Project supported by the National Natural Science Foundation of China (Grant No 10274724).
文摘We used the close-coupling optical (CCO) approach to investigate the open-shell carbon atom. The elastic cross sections have been presented at the energies below 90eV, and the present CCO results have been compared with other theoretical results. We found that polarization and the continuum states have significant contributions to the elastic cross sections. The present calculations show that the CCO method is capable of calculating electron scattering from open-shell atoms.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500)the National Natural Science Foundation of China (Grant Nos. 12334010 and U1932207)。
文摘Oscillator strengths and cross sections of the valence-shell excitations in NO_(2)are of great significance in testing the theoretical calculations and monitoring the state of the ozone layer in the earth’s atmosphere. In the present work, the generalized oscillator strengths of the valence-shell excitations in NO_(2)were obtained based on the fast electron scattering technique at an incident electron energy of 1.5 ke V and an energy resolution of about 70 me V. By extrapolating the generalized oscillator strengths to the limit of a zero squared momentum transfer, the optical oscillator strengths for the dipole-allowed transitions have been obtained, which provide an independent cross check to the previous experimental results. Based on the BE-scaling method, the corresponding integral cross sections have also been derived systematically from the excitation threshold to 5000 eV. The present dynamic parameters can provide the fundamental spectroscopic data of NO_(2)and have important applications in the studies of atmospheric science. The datasets presented in this paper, including the GOSs, OOSs and ICSs, are openly available at https://doi.org/10.57760/sciencedb.j00113.00156.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574039)
文摘A complex optical model potential modified by incorporating the concept of bonded atom, which takes into consideration the overlapping effect of electron clouds between atoms in a molecule, is firstly employed to calculate the absolute differential, elastic integrated and moment transfer cross sections for electron scattering by OCS over the incident energy range from 200 to 1000 eV using the additivity rule model at Hartree-Fock level. The calculated results are compared with those obtained by experiment and other theories wherever available, and good agreement is obtained over a wide energy range. It is shown that the additivity rule model together with the modified potential is completely suitable for calculating the absolute differential, elastic integrated and moment transfer cross sections of electron scattering by molecules such as OCS.
基金Project supported by the Shanghai Development Foundation from Science and Technology, China (Grant Nos 06JC14082 and 06QA14062), the National Natural Science Foundation of China (Grant No 10535010), and the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No KJXC3-SYW-N2).
文摘We investigate the differential cross sections (DCS) of elastic electron scattering from CH4, CF4 and SF6 at six impact energies in a range of 100 700eV by employing the independent atom model (IAM) together with the relativistic partial waves. The atom is present in an optical potential which is complex, spherically symmetric, and energy dependent. The optical potential of the atom is the sum of the direct static, dynamic polarization, local exchange and modified absorption potentials. The results obtained by using a modified absorption potential show significant improvements on the unmodified absorption potential results. The present results are generally in good agreement with experimental data available. In addition, the present results indicate that the structure of molecule manifests the observable effects on electron- molecule scattering.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11204121)the Natural Science Foundation of Shandong Province,China(Grant No. ZR2011AL021)+1 种基金the National Natural Science Foundation of China (Grant No. 11074104)the Discipline Construction Fund of Ludong University,China
文摘The original additivity rule method cannot give good results for electron scattering from SO,SO2,SO2Cl2,SO2ClF,and SO2F2 molecules at low energy,because the electron-molecule scattering is simply reduced to electron-atom scattering.Considering the difference between the bound atom in a molecule and the corresponding free atom,the original additivity rule is revised.With the revised additivity rule,the total cross sections for electron scattering from these molecules are calculated over a wide energy range below 3000 eV and compared with the available experimental and theoretical data.A better agreement between them is obtained.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No. ZR2011AL021)the National Natural Science Foundation of China (Grant No. 11074104)+1 种基金the Research Foundation of Ludong University,China (Grant No. LY20072801)the Discipline Construction Fund of Ludong University,China
文摘The additivity rule for electron-molecule scattering is revised by considering the difference between the free atom and the bound atom in the molecule. The total cross sections for electron scattering from fluoromethanes (CF4, CF3H, CF2H2, and CFH3) are calculated in an energy range from 100 eV to 1500 eV by the revised additivity rule. The present calculations are compared with the original additivity rule results and the available experimental data. Better agreement with each other is obtained.
文摘A final state wave function of multiple scattering theory developed by Das and seal is utilized in the present study to calculate the triple differential cross sections (TDCS) for the ionization of metastable 3S state hydrogen atoms at incident electron energy of 250 eV with the exchange effects in the asymmetric coplanar geometry for various kinematic conditions. Our present calculation results are compared with the available hydrogenic ground state experimental data and other existing theoretical results. A good qualitative agreement is shown with those of compared results of the present study specifically with hydrogenic ground state experimental data and metastable 2S and 2P state with exchange effect results. These new results offer an extensive scope for experimental verification in such ionization process.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574039).
文摘A complex optical model potential modified by incorporating the concept of bonded atom, which takes into consideration the overlapping effect of electron clouds between two atoms in a molecule, is first employed to calculate the total cross sections for electrons scattering from such complex molecules as C2H6, C2F6, C6H6 and C6F6 using the aclditivity rule model at Hartree-Fock level over the energy range from 100 eV to 5000 eV. The total cross sections are quantitatively compared with those obtained by experiments wherever available, and they are in good agreement with each other over a wide energy range. It is shown that the modified potential together with the additivity rule model is completely suitable for the calculation of total cross sections of electrons scattering from such complex molecules as C2H6, C2F6, C6H6 and C6F6 above 200 eV-300 eV.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574039)the Program for Science and Technology Innovation Talents in Universities of Henan Province in China (Grant No 2008HASTIT008)
文摘Taking into consideration the changes of the geometric shielding effect in a molecule as the energy of incident electrons varies, this paper presents an empirical fraction, which depends on the energy of incident electrons, the target's molecular dimension and the atomic and electronic numbers in the molecule. Using this empirical fraction, it proposes a new formulation of the additivity rule. Employing the new additivity rule, it calculates the total cross sections of electron scattering by C2H4, C6H6, C6H14 and C8H18 over the energy range from 50 to 5000eV. In order to exclude the calculation deviations caused by solving the radial Schrodinger equation of electron scattering by atoms, here the atomic cross sections are derived from the experimental total cross section results of simple molecules (H2, O2, CO) via the inversion algorithm. The quantitative total cross sections are compared with those obtained by experiments and other theories, and good agreement is obtained over a wide energy range, even at energy of several tens of eV.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1504109 and 11604085)the Program for Science and Technology Innovation Talents in the Universities of Henan Province,China(Grant No.19HASTIT018)。
文摘We report elastic cross sections for low-energy electron scattering with formamide-(H_(2)O)n complexes(n=1,2)in the energy region of 0.01-8 eV.The scattering calculations are performed using the R-matrix method in the static-exchange(SE)approximation.We consider three structures of formamide-H_(2)O and six structures of formamide-(H_(2)O)_(2)in the present work.Our purpose is to investigate effects of water molecules hydrogen-bonding to formamide.We focus on the influence of microsolvation on theπ*andσ*resonances of formamide.The scattering result for complexes shows that the position ofπ*resonance appears at lower or higher energies in the cluster than in the isolated formamide depending on the complex structure and the water role in the hydrogen bonding.We explain this behavior according to the net charge of the solute.It is found that the microsolvation environment has a substantial effect on the width ofπ*resonance.Our results indicate that surrounding water molecules may affect the lifetime of the resonances,and hence the process is driven by the anion state,such as the dissociative electron attachment.
文摘First Born triple differential cross sections (TDCS) for ionization of metastable 3P-state hydrogen atoms by electrons are calculated for various kinematic conditions in the asymmetric coplanar geometry. A multiple scattering theory is used in this study. The present results are compared with other existing related theoretical results for ionizations of hydrogen atoms from metastable 2S-state and 2P-state, showing a good qualitative agreement. There is no available theoretical study for ionization of metastable 3P-state hydrogen atoms by electrons. We are expecting that the present results provide a wide scope for further study of such ionization problems.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402300)the National Natural Science Foundation of China(Grant Nos.U1932207 and 12104437)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB34000000)The financial support from the Heavy Ion Research Facility in Lanzhou(HIRFL)。
文摘Electron-impact excitation integral cross sections play an important role in understanding the energy transfer processes in many applied physics. Practical applications require integral cross sections in a wide collision energy range from the excitation threshold to several ke V. The recently developed BE-scaling method is able to meet the demands of integral cross sections for dipole-allowed transitions while the prerequisite relies on the accurate generalized oscillator strengths. Fast electron and x-ray scatterings are the conventional experimental techniques to approach the generalized oscillator strengths,and the joint study by both methods can provide credible cross-checks. The validated generalized oscillator strengths can then be used to extrapolate optical oscillator strengths by fitting the data with the Lassettre formula. The fitted curve also enables the integration of generalized oscillator strengths over the whole momentum transfer region to obtain the BE-scaled integral excitation cross sections. Here, experimental measurements by both fast electron and x-ray scattering of argon and carbon dioxide are reviewed. The integral cross sections for some low-lying states are derived from the cross-checked generalized oscillator strengths for the first time. The integral cross sections presented in this paper are openly available at https://doi.org/10.11922/sciencedb.01466.
文摘In this work, the elastic cross section is calculated at energies above the Coulomb barrier for 3He + 58Ni using a Woods-Saxon potential. The solutions of the radial Schrödinger equations are calculated numerically and they are introduced in the S matrix, after which the cross section is obtained. The parameters in the potential are adjusted to satisfy known experimental data.
文摘The differential elastic and inelastic scattering neutron cross sections of <sup>12</sup>C atE<sub>n</sub>=14.7 MeV produced by the T(d,n)<sup>4</sup>He reaction were measured using an associatedparticle fast neutron TOF spectrometer at 15 angles ranging from 15° to 130°.Theflight path was 2.54 m.The neutron detector consisting of an ST-451 liquid scintillatorwas massively shielded.
文摘Triple differential cross sections (TDCS) are estimated for the ionization of metastable 3d-state hydrogen atoms by electron at 250 eV for various kinematic conditions pursuing a multiple scattering theory. The present new results are compared with the theoretical results of hydrogenic different metastable states as well as the hydrogenic ground state experimental data. Obtained new finding results are in good qualitative agreement with those of compared theories. The present results give an immense opportunity for experimental trial in the field of ionization problems.
基金Supported by the National Natural Science Foundation of China(U2067205)。
文摘We present a systematic study of 6Li elastic scattering and total reaction cross sections at incident energies around the Coulomb barrier within the continuum discretized coupled-channels(CDCC)framework,where 6Li is treated in anα+d two-body model.Collisions with 27Al,64Zn,138Ba,and 208Pa are analyzed.The microscopic optical potentials(MOP)based on Skyrme nucleon-nucleon interaction forαand d are adopted in CDCC calculations and satisfactory agreement with the experimental data is obtained without any adjustment on MOPs.For comparison,αand d global phenomenological optical potentials(GOP)are also used in CDCC analysis and a reduction of no less than 50%on the surface imaginary part of deuteron GOP is required for describing the data.In all cases,the 6Li breakup effect is significant and provides repulsive correction to the folding model potential.The reduction on the surface imaginary part of GOP of deuteron reveals a strong suppression of the reaction probability of deuteron as a component of 6Li when compared with that of a free deuteron.Further investigation is performed by considering the d breakup process equivalently within the dynamic polarization potential approach,and the results show that d behaves in a manner similar to a tightly bound nucleus in 6Li induced reactions.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574039) and the Science Foundation for Young Scientists of Henan Normal University, China (Grant No 2005004).
文摘The elastic scattering properties for collisions between cold and ultracold 39K atoms in a triplet state are investigated. Based on the recent theoretical and experimental results, the improved hybrid potential is presented for a triplet α3∑u^+ ground state of K2. Our calculated value of the s-wave scattering length a by using the Numerov method for the triplet state is 79.578α0 and found to be in good agreement with the previous ones. The numbers of bound states are supported by the molecular potential. Pronounced shape resonances appear for the l = 3 partial waves for the α3∑u^+ state. Furthermore, the s-wave scattering cross section, the total cross section and energy positions of shape resonances for the α3∑u^+ state are calculated.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274219)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘Laser-induced electron diffraction(LIED), in which elastic scattering of the returning electron with the parent ion takes place, has been used to extract atomic potential and image molecular structures with sub-?A precision and exposure time of a few femtoseconds. So far, the polarization and exchange effects have not been taken into account in the theoretical calculation of differential cross section(DCS) for the laser-induced rescattering processes. However, the validity of this theoretical treatment has never been verified. In this work, we investigate the polarization and exchange effects on electron impact elastic scattering with rare gas atoms and ions. It is found that, while the exchange effect generally plays a more important role than the polarization effect in the elastic scattering process, the exchange effect is less important on electron–ion collisions than on electron–atom collisions, especially for scattering in backward direction. In addition, our calculations show that, for electron–atom collisions at incident energies above 50 e V, both the polarization and exchange effects can be safely neglected, while for electron–ion collisions, both the polarization and exchange potentials do not make substantial contributions to the DCS at incident energies above 20 e V and scattering angles larger than 90?. Our investigation confirms the validity of the current LIED method.
基金supported by the National Natural Science Foundation of China (Grant No. 10574039)the Innovation Scientists and Technicians Troop Construction Projects of Henan Province of China (Grant No. 084100510011)
文摘This paper theoretically studies the elastic scattering properties in a mixture of 6Li and 7Li atoms at cold and ultracold temperatures. Based on the constructed accurate interatomic potential of the triplet state for 6Li7Li mixture by the mass scaling method, it calculates the interspecies s-wave scattering lengths and the p-wave scattering lengths by the variable phase method and the semiclassical method, respectively. The scattering length is in good agreement with the experiment. The partial-wave and total cross sections are also calculated and a rich resonance structure is found.