The Kingdom of Saudi Arabia(KSA)has achieved significant milestones in cybersecurity.KSA has maintained solid regulatorymechanisms to prevent,trace,and punish offenders to protect the interests of both individual user...The Kingdom of Saudi Arabia(KSA)has achieved significant milestones in cybersecurity.KSA has maintained solid regulatorymechanisms to prevent,trace,and punish offenders to protect the interests of both individual users and organizations from the online threats of data poaching and pilferage.The widespread usage of Information Technology(IT)and IT Enable Services(ITES)reinforces securitymeasures.The constantly evolving cyber threats are a topic that is generating a lot of discussion.In this league,the present article enlists a broad perspective on how cybercrime is developing in KSA at present and also takes a look at some of the most significant attacks that have taken place in the region.The existing legislative framework and measures in the KSA are geared toward deterring criminal activity online.Different competency models have been devised to address the necessary cybercrime competencies in this context.The research specialists in this domain can benefit more by developing a master competency level for achieving optimum security.To address this research query,the present assessment uses the Fuzzy Decision-Making Trial and Evaluation Laboratory(Fuzzy-DMTAEL),Fuzzy Analytic Hierarchy Process(F.AHP),and Fuzzy TOPSIS methodology to achieve segment-wise competency development in cyber security policy.The similarities and differences between the three methods are also discussed.This cybersecurity analysis determined that the National Cyber Security Centre got the highest priority.The study concludes by perusing the challenges that still need to be examined and resolved in effectuating more credible and efficacious online security mechanisms to offer amoreempowered ITES-driven economy for SaudiArabia.Moreover,cybersecurity specialists and policymakers need to collate their efforts to protect the country’s digital assets in the era of overt and covert cyber warfare.展开更多
Digital forensics is the science of identifying, extracting, analyzing and presenting the digital evidence that has been stored in the digital devices. Various digital tools and techniques are being used to achieve th...Digital forensics is the science of identifying, extracting, analyzing and presenting the digital evidence that has been stored in the digital devices. Various digital tools and techniques are being used to achieve this. Our paper explains forensic analysis steps in the storage media, hidden data analysis in the file system, network forensic methods and cyber crime data mining. This paper proposes a new tool which is the combination of digital forensic investigation and crime data mining. The proposed system is designed for finding motive, pattern of cyber attacks and counts of attacks types happened during a period. Hence the proposed tool enables the system administrators to minimize the system vulnerability.展开更多
The network is a major platform for implementing new cyber-telecom crimes.Therefore,it is important to carry out monitoring and early warning research on new cyber-telecom crime platforms,which will lay the foundation...The network is a major platform for implementing new cyber-telecom crimes.Therefore,it is important to carry out monitoring and early warning research on new cyber-telecom crime platforms,which will lay the foundation for the establishment of prevention and control systems to protect citizens’property.However,the deep-learning methods applied in the monitoring and early warning of new cyber-telecom crime platforms have some apparent drawbacks.For instance,the methods suffer from data-distribution differences and tremendous manual efforts spent on data labeling.Therefore,a monitoring and early warning method for new cyber-telecom crime platforms based on the BERT migration learning model is proposed.This method first identifies the text data and their tags,and then performs migration training based on a pre-training model.Finally,the method uses the fine-tuned model to predict and classify new cyber-telecom crimes.Experimental analysis on the crime data collected by public security organizations shows that higher classification accuracy can be achieved using the proposed method,compared with the deep-learning method.展开更多
The mobile Cyber Crime detection is challenged by number of mobiledevices (internet of things), large and complex data, the size, the velocity,the nature and the complexity of the data and devices has become sohigh th...The mobile Cyber Crime detection is challenged by number of mobiledevices (internet of things), large and complex data, the size, the velocity,the nature and the complexity of the data and devices has become sohigh that data mining techniques are no more efficient since they cannothandle Big Data and internet of things. The aim of this research work wasto develop a mobile forensics framework for cybercrime detection usingmachine learning approach. It started when call was detected and thisdetection is made by machine learning algorithm furthermore intelligentmass media towers and satellite that was proposed in this work has theability to classified calls whether is a threat or not and send signal directlyto Nigerian communication commission (NCC) forensic lab for necessaryaction.展开更多
文摘The Kingdom of Saudi Arabia(KSA)has achieved significant milestones in cybersecurity.KSA has maintained solid regulatorymechanisms to prevent,trace,and punish offenders to protect the interests of both individual users and organizations from the online threats of data poaching and pilferage.The widespread usage of Information Technology(IT)and IT Enable Services(ITES)reinforces securitymeasures.The constantly evolving cyber threats are a topic that is generating a lot of discussion.In this league,the present article enlists a broad perspective on how cybercrime is developing in KSA at present and also takes a look at some of the most significant attacks that have taken place in the region.The existing legislative framework and measures in the KSA are geared toward deterring criminal activity online.Different competency models have been devised to address the necessary cybercrime competencies in this context.The research specialists in this domain can benefit more by developing a master competency level for achieving optimum security.To address this research query,the present assessment uses the Fuzzy Decision-Making Trial and Evaluation Laboratory(Fuzzy-DMTAEL),Fuzzy Analytic Hierarchy Process(F.AHP),and Fuzzy TOPSIS methodology to achieve segment-wise competency development in cyber security policy.The similarities and differences between the three methods are also discussed.This cybersecurity analysis determined that the National Cyber Security Centre got the highest priority.The study concludes by perusing the challenges that still need to be examined and resolved in effectuating more credible and efficacious online security mechanisms to offer amoreempowered ITES-driven economy for SaudiArabia.Moreover,cybersecurity specialists and policymakers need to collate their efforts to protect the country’s digital assets in the era of overt and covert cyber warfare.
文摘Digital forensics is the science of identifying, extracting, analyzing and presenting the digital evidence that has been stored in the digital devices. Various digital tools and techniques are being used to achieve this. Our paper explains forensic analysis steps in the storage media, hidden data analysis in the file system, network forensic methods and cyber crime data mining. This paper proposes a new tool which is the combination of digital forensic investigation and crime data mining. The proposed system is designed for finding motive, pattern of cyber attacks and counts of attacks types happened during a period. Hence the proposed tool enables the system administrators to minimize the system vulnerability.
基金supported in part by the Basic Public Welfare Research Program of Zhejiang Province under Grant LGF20G030001.
文摘The network is a major platform for implementing new cyber-telecom crimes.Therefore,it is important to carry out monitoring and early warning research on new cyber-telecom crime platforms,which will lay the foundation for the establishment of prevention and control systems to protect citizens’property.However,the deep-learning methods applied in the monitoring and early warning of new cyber-telecom crime platforms have some apparent drawbacks.For instance,the methods suffer from data-distribution differences and tremendous manual efforts spent on data labeling.Therefore,a monitoring and early warning method for new cyber-telecom crime platforms based on the BERT migration learning model is proposed.This method first identifies the text data and their tags,and then performs migration training based on a pre-training model.Finally,the method uses the fine-tuned model to predict and classify new cyber-telecom crimes.Experimental analysis on the crime data collected by public security organizations shows that higher classification accuracy can be achieved using the proposed method,compared with the deep-learning method.
文摘The mobile Cyber Crime detection is challenged by number of mobiledevices (internet of things), large and complex data, the size, the velocity,the nature and the complexity of the data and devices has become sohigh that data mining techniques are no more efficient since they cannothandle Big Data and internet of things. The aim of this research work wasto develop a mobile forensics framework for cybercrime detection usingmachine learning approach. It started when call was detected and thisdetection is made by machine learning algorithm furthermore intelligentmass media towers and satellite that was proposed in this work has theability to classified calls whether is a threat or not and send signal directlyto Nigerian communication commission (NCC) forensic lab for necessaryaction.