Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inac...Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inaccessible geothermal resources.However,the extraction of geothermal energy from deep reservoirs poses many challenges due to high‐temperature and high‐geostress conditions.These factors can significantly impact the surrounding rock and its fracture formation.A comprehensive understanding of the thermal–hydraulic–mechanical(THM)coupling effect is crucial to the safe and efficient exploitation of geothermal resources.This study presented a THM coupling numerical model for the geothermal reservoir of the Yangbajing geothermal system.This proposed model investigated the geothermal exploitation performance and the stress distribution within the reservoir under various combinations of geothermal wells and mass flow rates.The geothermal system performance was evaluated by the criteria of outlet temperature and geothermal productivity.The results indicate that the longer distance between wells can increase the outlet temperature of production wells and improve extraction efficiency in the short term.In contrast,the shorter distance between wells can reduce the heat exchange area and thus mitigate the impact on the reservoir stress.A larger mass flow rate is conducive to the production capacity enhancement of the geothermal system and,in turn causes a wider range of stress disturbance.These findings provide valuable insights into the optimization of geothermal energy extraction while considering reservoir safety and long‐term sustainability.This study deepens the understanding of the THM coupling effects in geothermal systems and provides an efficient and environmentally friendly strategy for a geothermal energy system.展开更多
Offset-tracking is an essential method for deriving glacier flow rates using optical imagery.Sentinel-2(S2)and Landsat-8/9(L8/9)are popular optical satellites or constellations for polar studies,offering high spatial ...Offset-tracking is an essential method for deriving glacier flow rates using optical imagery.Sentinel-2(S2)and Landsat-8/9(L8/9)are popular optical satellites or constellations for polar studies,offering high spatial resolution with relatively short revisit time,wide swath width,and free accessibility.To evaluate and compare the precision of offset-tracking results yielded with these two kinds of data,in this study S2 and L8/9 imagery observed in Petermann Glacier in Greenland,Karakoram in High-Mountains Asia,and Amery Ice Shelf in the Antarctic are analyzed.Outliers and various systematic error sources in the offset-tracking results including orbital and strip errors were analyzed and eliminated at the pre-process stage.Precision at the off-glacier(bare rock)region was evaluated by presuming that no deformation occurred;then for both glacierized and the off-glacier regions,precision of velocity time series was evaluated based on error propagation theory.The least squares method based on connected components was used to solve flow rates time series based on multi-pair images offset-tracking.The results indicated that S2 achieved slightly higher precision than L8/9 in terms of both single-pair derived displacements and least square solved daily flow rates time series.Generally,the RMSE of daily velocity is 26%lower for S2 than L8/9.Moreover,S2 provided higher temporal resolution for monitoring glacier flow rates.展开更多
Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate ...Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.展开更多
Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a...Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a hybrid algorithm that combines the fast Fourier transform(FFT)based co-correlation algorithm and the Horn–Schunck(HS)optical flow pyramid iterative algorithm to increase the reconstruction speed.The Rankine vortex simulation experiment was performed,in which the particle velocity field was reconstructed using the proposed algorithm and the rainbow PIV method.The average endpoint error and average angular error of the proposed algorithm were roughly the same as those of the rainbow PIV algorithm;nevertheless,the reconstruction time was 20%shorter.Furthermore,the effect of velocity magnitude and particle density on the reconstruction results was analyzed.In the end,the performance of the proposed algorithm was verified using real experimental single-vortex and double-vortex datasets,from which a similar particle velocity field was obtained compared with the rainbow PIV algorithm.The results show that the reconstruction speed of the proposed hybrid algorithm is approximately 25%faster than that of the rainbow PIV algorithm.展开更多
Vanadium redox flow battery(VRFB)is considered one of the most potential large-scale energy storage technolo-gies in the future,and its electrolyte flow rate is an important factor affecting the performance of VRFB.To...Vanadium redox flow battery(VRFB)is considered one of the most potential large-scale energy storage technolo-gies in the future,and its electrolyte flow rate is an important factor affecting the performance of VRFB.To study the effect of electrolyte flow rate on the performance of VRFB,the hydrodynamic model is established and a VRFB system is developed.The results show that under constant current density,with the increase of electrolyte flow rate,not only the coulombic efficiency,energy efficiency,and voltage efficiency will increase,but also the capacity and energy discharged by VRFB will also increase.But on the other hand,as the flow rate increases,the power of the pump also increases,resulting in a decrease in system efficiency.The energy discharged by the system does not increase with the increase in flow rate.Considering the balance between efficiency and pump power loss,it is experimentally proved that 120 mL·min-1 is the optimal working flow rate of the VRFB system,which can maximize the battery performance and discharge more energy.展开更多
The biochemistry of human saliva can be altered by food intake.The benefits of tea drinking were extensively studied but the influence of tea ingestion on human saliva has not been revealed.The work aimed to investiga...The biochemistry of human saliva can be altered by food intake.The benefits of tea drinking were extensively studied but the influence of tea ingestion on human saliva has not been revealed.The work aimed to investigate the immediate and delayed effect of vine tea,oolong tea and black tea intake on certain salivary biochemistry and flow rate.The saliva samples of healthy subjects were collected before,after and 30 min after tea ingestion.The chemical compositions and antioxidant capacity of tea samples were analyzed to correlate with salivary parameters.Principal component analysis indicated that the effects of vine tea consumption were dominated by increasing salivary flow rate(SFR),production rate of total protein(TPC),thiol(SH),malondialdehyde,catalase activity and antioxidant capacity(FRAP)in saliva.The antioxidant profile of studied tea samples(FRAP,polyphenols,flavonoids)was positively correlated with salivary SFR,TPC,SH and FRAP but negatively correlated with salivary uric acid concentration in saliva.展开更多
Experiments are conducted on the evacuation rate of pedestrians through exits with queued evacuation pattern and random evacuation pattern. The experimental results show that the flow rate of pedestrians is larger wit...Experiments are conducted on the evacuation rate of pedestrians through exits with queued evacuation pattern and random evacuation pattern. The experimental results show that the flow rate of pedestrians is larger with the random evacuation pattern than with the queued evacuation pattern. Therefore, the exit width calculated based on the minimum evacuation clear width for every 100 persons, which is on the assumption that the pedestrians pass through the exit in one queue or several queues, is conservative. The number of people crossing the exit simultaneously is greater in the random evacuation experiments than in the queued evacuation experiments, and the time interval between the front row and rear row of people is shortened in large-exit conditions when pedestrians evacuate randomly. The difference between the flow rate with a queued evacuation pattern and the flow rate with a random evacuation pattern is related to the surplus width of the exit, which is greater than the total width of all accommodated people streams. Two dimensionless quantities are defined to explore this relationship. It is found that the difference in flow rate between the two evacuation patterns is stable at a low level when the surplus width of the exit is no more than 45% of the width of a single pedestrian stream. There is a great difference between the flow rate with the queued evacuation pattern and the flow rate with the random evacuation pattern in a scenario with a larger surplus width of the exit. Meanwhile, the pedestrians crowd extraordinarily at the exit in these conditions as well, since the number of pedestrians who want to evacuate through exit simultaneously greatly exceeds the accommodated level. Therefore, the surplus width of exit should be limited especially in the narrow exit condition, and the relationship between the two dimensionless quantities mentioned above could provide the basis to some extent.展开更多
Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves...Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.展开更多
In this paper the cross correlation technique for measuring velocity of bulk material flow in pipe line was investigated and a new capacitance transducer with converter has been introduced. The system was controlled b...In this paper the cross correlation technique for measuring velocity of bulk material flow in pipe line was investigated and a new capacitance transducer with converter has been introduced. The system was controlled by single chip computer with a real-time cross correlation cumputing software. Computing time reaches 1 sec and velocity measuring error is less than 1%.展开更多
Flow behavior and microstructure of a homogenized ZK60 magnesium alloy were investigated during compression in the temperature range of 250-400 ℃ and the strain rate range of 0.1-50 s^-1. The results showed that dyna...Flow behavior and microstructure of a homogenized ZK60 magnesium alloy were investigated during compression in the temperature range of 250-400 ℃ and the strain rate range of 0.1-50 s^-1. The results showed that dynamic recrystallization (DRX) developed mainly at grain boundaries at lower strain rate (0.1-1 s^-1), while in the case of higher strain rate (10-50 s^-1), DRX occurred extensively both at twins and grain boundaries at all temperature range, especially at temperature lower than 350 ℃, which resulted in a more homogeneous microstructure than that under other deformation conditions. The DRX extent determines the hot workability of the workpiece, therefore, hot deformation at the strain rate of 10-50 s^-1 and in the temperature range of 250-350 ℃ was desirable for ZK60 alloy. Twin induced DRX during high strain rate compression included three steps. Firstly, twins with high dislocation subdivided the initial grain, then dislocation arrays subdivided the twins into subgrains, and after that DRX took place with a further increase of strain.展开更多
The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages i...The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages in the pipeline occur occasionally. To maintain the natural gas flow in the pipeline, we proposed a method for analyzing blockages and ascribed them to the hydrate formation and agglomeration. A new high-pressure flow loop was developed to investigate hydrate plug formation and hydrate particle size, using a mixture of diesel oil, water, and natural gas as experimental fluids. The influences of pressure and initial flow rate were also studied. Experimental results indicated that when the flow rate was below 850 kg/h, gas hydrates would form and then plug the pipeline, even at a low water content (10%) of a water/oil emulsion. Furthermore, some practical suggestions were made for daily management of the subsea pipeline.展开更多
In order to analyze the impact of stretching-segment on the saturated flow rate of signalized intersection approach, an improved cellular automation model was proposed to estimate its saturated flow rate. The NaSch mo...In order to analyze the impact of stretching-segment on the saturated flow rate of signalized intersection approach, an improved cellular automation model was proposed to estimate its saturated flow rate. The NaSch model was improved by adding different slow probabilities, turning deceleration rules and modified lane changing rules. The relationship between the saturated flow rate of stretching-segments and adjacent lanes was tested in numerical simulation. The length of stretching-segment, cycle length and green time were selected as impact factors of the cellular automation model. The simulation result indicates that the geometrics design of stretching-segment and the traffic signal timing scenario have major effects on the saturated flow rate of the intersection approach. The saturated flow rate will continually increase with increasing stretching-segment length until it reaches a threshold. After reaching the threshold, the stretching-segment can be treated as a separate lane. The green time is approximately linearly related to the threshold length of the stretching-segment. An optimum cycle length exists when the length of the stretching-segment is not long enough, and it is approximately linearly related to the length of stretching-segment.展开更多
This paper discussed influences of flow rates of O_2, C_3H_8, and compressedair on the melting degree of particles during HVOF (high velocity oxy-fuel) sprayed CoCrW coating.The O_2 flow rate has the maximal effect on...This paper discussed influences of flow rates of O_2, C_3H_8, and compressedair on the melting degree of particles during HVOF (high velocity oxy-fuel) sprayed CoCrW coating.The O_2 flow rate has the maximal effect on the melting of particles, the C_3H_8 flow rate has thesecond, and the compressed air flow rate has the minimal effect. The bond strength of the HVOFsprayed CoCrW coating is over 54 MPa. The porosity ratio of the HVOF sprayed CoCrW coating afteroptimization of gas flow rates is less than 2%. The average microhardness of the coating is up toHV_(0.1) 545. The oxidation amount per unit area of the HVOF sprayed CoCrW coating increases withthe holding time increasing at 800℃. In the same way, the oxidation amount of the coating increasesas the temperature increases. Particularly, the oxidation of the coating drastically increases over850℃.展开更多
The effects of temperature and strain rate on the flow stress behavior of twin-roll cast, rolled and heat-treated AZ31 magnesium alloys were investigated under uniaxial tension. At high temperatures, dynamic recovery,...The effects of temperature and strain rate on the flow stress behavior of twin-roll cast, rolled and heat-treated AZ31 magnesium alloys were investigated under uniaxial tension. At high temperatures, dynamic recovery, continuous dynamic recrystallization, grain boundary sliding and the activation of additional slip systems lead to an improvement of the ductility of the alloys. The elongation to failure is nearly independent of the strain rate between 473 and 523 K at 10-2 s-1 and 10-1 s-1, which is related to the strain rate dependence of the critical resolved shear stress(CRSS) for nonbasal slip. Despite the high temperature, twins are even observed at 573 K and 10-3 s-1 because they have a low CRSS.展开更多
Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between g...Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between gas and liquid was considered. With the pressure drop across the Venturi and the void fraction that was measured by electrical capacitance tomography apparatus, both mixture flow rate and oil flow rate could be obtained by the correlation. Experiments included bubble-, slug-, wave and annular flow with the void fraction ranging from 15% to 83%, the oil flow rate ranging from 0.97 kg/s to 1.78 kg/s, the gas flow rate ranging up to 0.018 kg/s and quality ranging nearly up to 2.0%. The root-mean-square errors of mixture mass flow rate and that of oil mass flow rate were less than 5%. Furthermore, coefficients of the correlation were modified based on flow regimes, with the results showing reduced root-mean-square errors.展开更多
Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during a...Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper, the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling.展开更多
The structure of wind-sand flow under different total sand transport rates was measured with field vertical anemometer and sand trap on the crest of typical coastal transverse ridge in Changli Gold Coast of Hebei Prov...The structure of wind-sand flow under different total sand transport rates was measured with field vertical anemometer and sand trap on the crest of typical coastal transverse ridge in Changli Gold Coast of Hebei Province, which is one of the most typical coastal aeolian distribution regions in China and famous for the tall and typical coastal transverse ridges. The measurement results show that, on the conditions of approximate wind velocities and same surface materials and environments, some changes happen to the structure of wind-sand flow with the increase of total sand transport rate on the crest of coastal transverse ridge. First, the sand transport rates of layers at different heights in the wind-sand flow increase, with the maximum increase at the height layer of 4-8cm. Second, the ratios of sand trans-port rates of layers at different heights to total sand transport rate decrease at the low height layer (0-4cm), but increase at the high height layer (4-60cm). Third, the distribution of the sand transport rate in the wind-sand flow can be expressed by an exponential function at the height layer of 0-40cm, but it changes from power function model to ex-ponential function model in the whole height layer (0-60cm) and changes into polynomial function model at the height layer of 40-60cm with the increase of total sand transport rate. Those changes have a close relationship with the limit of sand grain size of wind flow transporting and composition of sand grain size in the wind-sand flow.展开更多
To investigate the effects of flow rate on phytoplankton dynamics and related environment variables,a set of enclosure experiments with different fl ow rates were conducted in an artificial lake. We monitored nutrient...To investigate the effects of flow rate on phytoplankton dynamics and related environment variables,a set of enclosure experiments with different fl ow rates were conducted in an artificial lake. We monitored nutrients,temperature,dissolved oxygen,p H,conductivity,turbidity,chlorophyll-a and phytoplankton levels. The lower biomass in all flowing enclosures showed that flow rate significantly inhibited the growth of phytoplankton. A critical flow rate occurred near 0.06 m/s,which was the lowest relative inhibitory rate. Changes in flow conditions affected algal competition for light,resulting in a dramatic shift in phytoplankton composition,from blue-green algae in still waters to green algae in flowing conditions. These findings indicate that critical flow rate can be useful in developing methods to reduce algal bloom occurrence. However,flow rate significantly enhanced the inter-relationships among environmental variables,in particular by inducing higher water turbidity and vegetative reproduction of periphyton( Spirogyra). These changes were accompanied by a decrease in underwater light intensity,which consequently inhibited the photosynthetic intensity of phytoplankton. These results warn that a universal critical flow rate might not exist,because the effect of flow rate on phytoplankton is interlinked with many other environmental variables.展开更多
基金supported by the financial support from the National Natural Science Foundation of China(52204084)Project funded by the China Postdoctoral Science Foundation(2021M700388).
文摘Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inaccessible geothermal resources.However,the extraction of geothermal energy from deep reservoirs poses many challenges due to high‐temperature and high‐geostress conditions.These factors can significantly impact the surrounding rock and its fracture formation.A comprehensive understanding of the thermal–hydraulic–mechanical(THM)coupling effect is crucial to the safe and efficient exploitation of geothermal resources.This study presented a THM coupling numerical model for the geothermal reservoir of the Yangbajing geothermal system.This proposed model investigated the geothermal exploitation performance and the stress distribution within the reservoir under various combinations of geothermal wells and mass flow rates.The geothermal system performance was evaluated by the criteria of outlet temperature and geothermal productivity.The results indicate that the longer distance between wells can increase the outlet temperature of production wells and improve extraction efficiency in the short term.In contrast,the shorter distance between wells can reduce the heat exchange area and thus mitigate the impact on the reservoir stress.A larger mass flow rate is conducive to the production capacity enhancement of the geothermal system and,in turn causes a wider range of stress disturbance.These findings provide valuable insights into the optimization of geothermal energy extraction while considering reservoir safety and long‐term sustainability.This study deepens the understanding of the THM coupling effects in geothermal systems and provides an efficient and environmentally friendly strategy for a geothermal energy system.
基金supported by the National Natural Science Foundation of China(Grant no.42371136)the Guangdong Basic and Applied Basic Research Foundation(Grant no.2021B1515020032)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant no.311022003).
文摘Offset-tracking is an essential method for deriving glacier flow rates using optical imagery.Sentinel-2(S2)and Landsat-8/9(L8/9)are popular optical satellites or constellations for polar studies,offering high spatial resolution with relatively short revisit time,wide swath width,and free accessibility.To evaluate and compare the precision of offset-tracking results yielded with these two kinds of data,in this study S2 and L8/9 imagery observed in Petermann Glacier in Greenland,Karakoram in High-Mountains Asia,and Amery Ice Shelf in the Antarctic are analyzed.Outliers and various systematic error sources in the offset-tracking results including orbital and strip errors were analyzed and eliminated at the pre-process stage.Precision at the off-glacier(bare rock)region was evaluated by presuming that no deformation occurred;then for both glacierized and the off-glacier regions,precision of velocity time series was evaluated based on error propagation theory.The least squares method based on connected components was used to solve flow rates time series based on multi-pair images offset-tracking.The results indicated that S2 achieved slightly higher precision than L8/9 in terms of both single-pair derived displacements and least square solved daily flow rates time series.Generally,the RMSE of daily velocity is 26%lower for S2 than L8/9.Moreover,S2 provided higher temporal resolution for monitoring glacier flow rates.
文摘Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.
基金the National Natural Science Foundation of China(Grant Nos.51874264 and 52076200)。
文摘Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a hybrid algorithm that combines the fast Fourier transform(FFT)based co-correlation algorithm and the Horn–Schunck(HS)optical flow pyramid iterative algorithm to increase the reconstruction speed.The Rankine vortex simulation experiment was performed,in which the particle velocity field was reconstructed using the proposed algorithm and the rainbow PIV method.The average endpoint error and average angular error of the proposed algorithm were roughly the same as those of the rainbow PIV algorithm;nevertheless,the reconstruction time was 20%shorter.Furthermore,the effect of velocity magnitude and particle density on the reconstruction results was analyzed.In the end,the performance of the proposed algorithm was verified using real experimental single-vortex and double-vortex datasets,from which a similar particle velocity field was obtained compared with the rainbow PIV algorithm.The results show that the reconstruction speed of the proposed hybrid algorithm is approximately 25%faster than that of the rainbow PIV algorithm.
基金supported by the Special Fund for the Construction of Innovative Province in Hunan Province,China(2020RC3038)the Changsha City Fund for Distinguished and Innovative Young Scholars,China(kq1802007).
文摘Vanadium redox flow battery(VRFB)is considered one of the most potential large-scale energy storage technolo-gies in the future,and its electrolyte flow rate is an important factor affecting the performance of VRFB.To study the effect of electrolyte flow rate on the performance of VRFB,the hydrodynamic model is established and a VRFB system is developed.The results show that under constant current density,with the increase of electrolyte flow rate,not only the coulombic efficiency,energy efficiency,and voltage efficiency will increase,but also the capacity and energy discharged by VRFB will also increase.But on the other hand,as the flow rate increases,the power of the pump also increases,resulting in a decrease in system efficiency.The energy discharged by the system does not increase with the increase in flow rate.Considering the balance between efficiency and pump power loss,it is experimentally proved that 120 mL·min-1 is the optimal working flow rate of the VRFB system,which can maximize the battery performance and discharge more energy.
基金supported by The‘Pioneer’and‘Leading Goose’R&D Program of Zhejiang(2022C03138)The National Key Research and Development Program of China(2016YFD0400202)the National Natural Science Foundation of China(31571803)。
文摘The biochemistry of human saliva can be altered by food intake.The benefits of tea drinking were extensively studied but the influence of tea ingestion on human saliva has not been revealed.The work aimed to investigate the immediate and delayed effect of vine tea,oolong tea and black tea intake on certain salivary biochemistry and flow rate.The saliva samples of healthy subjects were collected before,after and 30 min after tea ingestion.The chemical compositions and antioxidant capacity of tea samples were analyzed to correlate with salivary parameters.Principal component analysis indicated that the effects of vine tea consumption were dominated by increasing salivary flow rate(SFR),production rate of total protein(TPC),thiol(SH),malondialdehyde,catalase activity and antioxidant capacity(FRAP)in saliva.The antioxidant profile of studied tea samples(FRAP,polyphenols,flavonoids)was positively correlated with salivary SFR,TPC,SH and FRAP but negatively correlated with salivary uric acid concentration in saliva.
基金Project supported by the Special Funds for Basic Operating Expenses of the Centre University of China (Grant No.23ZYJS006)。
文摘Experiments are conducted on the evacuation rate of pedestrians through exits with queued evacuation pattern and random evacuation pattern. The experimental results show that the flow rate of pedestrians is larger with the random evacuation pattern than with the queued evacuation pattern. Therefore, the exit width calculated based on the minimum evacuation clear width for every 100 persons, which is on the assumption that the pedestrians pass through the exit in one queue or several queues, is conservative. The number of people crossing the exit simultaneously is greater in the random evacuation experiments than in the queued evacuation experiments, and the time interval between the front row and rear row of people is shortened in large-exit conditions when pedestrians evacuate randomly. The difference between the flow rate with a queued evacuation pattern and the flow rate with a random evacuation pattern is related to the surplus width of the exit, which is greater than the total width of all accommodated people streams. Two dimensionless quantities are defined to explore this relationship. It is found that the difference in flow rate between the two evacuation patterns is stable at a low level when the surplus width of the exit is no more than 45% of the width of a single pedestrian stream. There is a great difference between the flow rate with the queued evacuation pattern and the flow rate with the random evacuation pattern in a scenario with a larger surplus width of the exit. Meanwhile, the pedestrians crowd extraordinarily at the exit in these conditions as well, since the number of pedestrians who want to evacuate through exit simultaneously greatly exceeds the accommodated level. Therefore, the surplus width of exit should be limited especially in the narrow exit condition, and the relationship between the two dimensionless quantities mentioned above could provide the basis to some extent.
文摘Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.
基金This project is supported by the doctorate fund of State Education Commission
文摘In this paper the cross correlation technique for measuring velocity of bulk material flow in pipe line was investigated and a new capacitance transducer with converter has been introduced. The system was controlled by single chip computer with a real-time cross correlation cumputing software. Computing time reaches 1 sec and velocity measuring error is less than 1%.
基金Project (14JJ6047) supported by the Natural Science Foundation of Hunan Province,ChinaProject (51274092) supported by the National Natural Science Foundation of ChinaProject (20120161110040) supported by the Doctoral Program of Higher Education ofChina
文摘Flow behavior and microstructure of a homogenized ZK60 magnesium alloy were investigated during compression in the temperature range of 250-400 ℃ and the strain rate range of 0.1-50 s^-1. The results showed that dynamic recrystallization (DRX) developed mainly at grain boundaries at lower strain rate (0.1-1 s^-1), while in the case of higher strain rate (10-50 s^-1), DRX occurred extensively both at twins and grain boundaries at all temperature range, especially at temperature lower than 350 ℃, which resulted in a more homogeneous microstructure than that under other deformation conditions. The DRX extent determines the hot workability of the workpiece, therefore, hot deformation at the strain rate of 10-50 s^-1 and in the temperature range of 250-350 ℃ was desirable for ZK60 alloy. Twin induced DRX during high strain rate compression included three steps. Firstly, twins with high dislocation subdivided the initial grain, then dislocation arrays subdivided the twins into subgrains, and after that DRX took place with a further increase of strain.
基金support from Subtopics of National Science and Technology Major Project(2011ZX05026-004-03)the National Natural Science Foundation of China (51104167)
文摘The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages in the pipeline occur occasionally. To maintain the natural gas flow in the pipeline, we proposed a method for analyzing blockages and ascribed them to the hydrate formation and agglomeration. A new high-pressure flow loop was developed to investigate hydrate plug formation and hydrate particle size, using a mixture of diesel oil, water, and natural gas as experimental fluids. The influences of pressure and initial flow rate were also studied. Experimental results indicated that when the flow rate was below 850 kg/h, gas hydrates would form and then plug the pipeline, even at a low water content (10%) of a water/oil emulsion. Furthermore, some practical suggestions were made for daily management of the subsea pipeline.
基金Projects(50422283,51208054) supported by the National Natural Science Foundation of China
文摘In order to analyze the impact of stretching-segment on the saturated flow rate of signalized intersection approach, an improved cellular automation model was proposed to estimate its saturated flow rate. The NaSch model was improved by adding different slow probabilities, turning deceleration rules and modified lane changing rules. The relationship between the saturated flow rate of stretching-segments and adjacent lanes was tested in numerical simulation. The length of stretching-segment, cycle length and green time were selected as impact factors of the cellular automation model. The simulation result indicates that the geometrics design of stretching-segment and the traffic signal timing scenario have major effects on the saturated flow rate of the intersection approach. The saturated flow rate will continually increase with increasing stretching-segment length until it reaches a threshold. After reaching the threshold, the stretching-segment can be treated as a separate lane. The green time is approximately linearly related to the threshold length of the stretching-segment. An optimum cycle length exists when the length of the stretching-segment is not long enough, and it is approximately linearly related to the length of stretching-segment.
文摘This paper discussed influences of flow rates of O_2, C_3H_8, and compressedair on the melting degree of particles during HVOF (high velocity oxy-fuel) sprayed CoCrW coating.The O_2 flow rate has the maximal effect on the melting of particles, the C_3H_8 flow rate has thesecond, and the compressed air flow rate has the minimal effect. The bond strength of the HVOFsprayed CoCrW coating is over 54 MPa. The porosity ratio of the HVOF sprayed CoCrW coating afteroptimization of gas flow rates is less than 2%. The average microhardness of the coating is up toHV_(0.1) 545. The oxidation amount per unit area of the HVOF sprayed CoCrW coating increases withthe holding time increasing at 800℃. In the same way, the oxidation amount of the coating increasesas the temperature increases. Particularly, the oxidation of the coating drastically increases over850℃.
基金financial support by the European Social Fund (project No. 080943441)
文摘The effects of temperature and strain rate on the flow stress behavior of twin-roll cast, rolled and heat-treated AZ31 magnesium alloys were investigated under uniaxial tension. At high temperatures, dynamic recovery, continuous dynamic recrystallization, grain boundary sliding and the activation of additional slip systems lead to an improvement of the ductility of the alloys. The elongation to failure is nearly independent of the strain rate between 473 and 523 K at 10-2 s-1 and 10-1 s-1, which is related to the strain rate dependence of the critical resolved shear stress(CRSS) for nonbasal slip. Despite the high temperature, twins are even observed at 573 K and 10-3 s-1 because they have a low CRSS.
基金Project (No. 2001AA413210) supported by the Hi-Tech Researchand Development Program (863) of China
文摘Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between gas and liquid was considered. With the pressure drop across the Venturi and the void fraction that was measured by electrical capacitance tomography apparatus, both mixture flow rate and oil flow rate could be obtained by the correlation. Experiments included bubble-, slug-, wave and annular flow with the void fraction ranging from 15% to 83%, the oil flow rate ranging from 0.97 kg/s to 1.78 kg/s, the gas flow rate ranging up to 0.018 kg/s and quality ranging nearly up to 2.0%. The root-mean-square errors of mixture mass flow rate and that of oil mass flow rate were less than 5%. Furthermore, coefficients of the correlation were modified based on flow regimes, with the results showing reduced root-mean-square errors.
文摘Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper, the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling.
基金Under the auspices of National Natural Science Foundation of China (No 40571019)
文摘The structure of wind-sand flow under different total sand transport rates was measured with field vertical anemometer and sand trap on the crest of typical coastal transverse ridge in Changli Gold Coast of Hebei Province, which is one of the most typical coastal aeolian distribution regions in China and famous for the tall and typical coastal transverse ridges. The measurement results show that, on the conditions of approximate wind velocities and same surface materials and environments, some changes happen to the structure of wind-sand flow with the increase of total sand transport rate on the crest of coastal transverse ridge. First, the sand transport rates of layers at different heights in the wind-sand flow increase, with the maximum increase at the height layer of 4-8cm. Second, the ratios of sand trans-port rates of layers at different heights to total sand transport rate decrease at the low height layer (0-4cm), but increase at the high height layer (4-60cm). Third, the distribution of the sand transport rate in the wind-sand flow can be expressed by an exponential function at the height layer of 0-40cm, but it changes from power function model to ex-ponential function model in the whole height layer (0-60cm) and changes into polynomial function model at the height layer of 40-60cm with the increase of total sand transport rate. Those changes have a close relationship with the limit of sand grain size of wind flow transporting and composition of sand grain size in the wind-sand flow.
基金Supported by the National Natural Science Foundation of China(Nos.51379146,51409190)the National Science Foundation for Post-Doctoral Scientists of China(No.2013M531218)
文摘To investigate the effects of flow rate on phytoplankton dynamics and related environment variables,a set of enclosure experiments with different fl ow rates were conducted in an artificial lake. We monitored nutrients,temperature,dissolved oxygen,p H,conductivity,turbidity,chlorophyll-a and phytoplankton levels. The lower biomass in all flowing enclosures showed that flow rate significantly inhibited the growth of phytoplankton. A critical flow rate occurred near 0.06 m/s,which was the lowest relative inhibitory rate. Changes in flow conditions affected algal competition for light,resulting in a dramatic shift in phytoplankton composition,from blue-green algae in still waters to green algae in flowing conditions. These findings indicate that critical flow rate can be useful in developing methods to reduce algal bloom occurrence. However,flow rate significantly enhanced the inter-relationships among environmental variables,in particular by inducing higher water turbidity and vegetative reproduction of periphyton( Spirogyra). These changes were accompanied by a decrease in underwater light intensity,which consequently inhibited the photosynthetic intensity of phytoplankton. These results warn that a universal critical flow rate might not exist,because the effect of flow rate on phytoplankton is interlinked with many other environmental variables.