In conventional cross-coupled controller design,the method usually ignored the inherent characteristic of time-vary- ing parameters and model uncertainties in system.In this paper,a cross-coupled controller(CCC)using ...In conventional cross-coupled controller design,the method usually ignored the inherent characteristic of time-vary- ing parameters and model uncertainties in system.In this paper,a cross-coupled controller(CCC)using an H~∞control scheme has been proposed to reduce the contouring error for an X-Y table.Furthermore,the proposed CCC design,which is a typical Multi- Input Multi-Output(MIMO)system with linear time varying(LTV)characteristics,has been verified as being internally stable. The simulations are carried on Matlab simulink to verify the proposed method,and the results showed that the proposed method can reduce the contouring error significantly compared with the conventional one.展开更多
By analyzing the principle of process variations, a lightweight Physical Unclonable Function (PUF) circuit based on selectable cross-coupled inverters is proposed in this paper. Firstly, selectable cross-coupled inv...By analyzing the principle of process variations, a lightweight Physical Unclonable Function (PUF) circuit based on selectable cross-coupled inverters is proposed in this paper. Firstly, selectable cross-coupled inverters are chosen for two delay paths. Simultaneously, the circuit takes challenge signal to control each delay path. The PUF cell circuit is implemented in Semiconductor Manufacturing International Corporation (SMIC) 65 nm CMOS technology and the layout area is 2.94μm × 1.68μm. Then the 64-bit PUF circuit is achieved with the cascade connection of cell circuits. The simulation results show that the randomness is 49.4% and the reliability is 96.5%. Compared to the other works, this PUF circuit improves the encrypt performance and greatly reduces the area.展开更多
文摘In conventional cross-coupled controller design,the method usually ignored the inherent characteristic of time-vary- ing parameters and model uncertainties in system.In this paper,a cross-coupled controller(CCC)using an H~∞control scheme has been proposed to reduce the contouring error for an X-Y table.Furthermore,the proposed CCC design,which is a typical Multi- Input Multi-Output(MIMO)system with linear time varying(LTV)characteristics,has been verified as being internally stable. The simulations are carried on Matlab simulink to verify the proposed method,and the results showed that the proposed method can reduce the contouring error significantly compared with the conventional one.
基金Supported by the National Natural Science Foundation of China(Nos.61474068,61404076,61274132)the Zhejiang Provincial Natural Science Foundation of China(No.LQ14F040001)the Doctoral Program of Higher Education of China(No.20113305110005)
文摘By analyzing the principle of process variations, a lightweight Physical Unclonable Function (PUF) circuit based on selectable cross-coupled inverters is proposed in this paper. Firstly, selectable cross-coupled inverters are chosen for two delay paths. Simultaneously, the circuit takes challenge signal to control each delay path. The PUF cell circuit is implemented in Semiconductor Manufacturing International Corporation (SMIC) 65 nm CMOS technology and the layout area is 2.94μm × 1.68μm. Then the 64-bit PUF circuit is achieved with the cascade connection of cell circuits. The simulation results show that the randomness is 49.4% and the reliability is 96.5%. Compared to the other works, this PUF circuit improves the encrypt performance and greatly reduces the area.