Using a three-step laser saturation excitation technique, the saturation effects on the Ba 6pns (J = 1) and 6pad (J = 1, 3) autoionization spectra are observed systemically in zero field. These saturation spectra ...Using a three-step laser saturation excitation technique, the saturation effects on the Ba 6pns (J = 1) and 6pad (J = 1, 3) autoionization spectra are observed systemically in zero field. These saturation spectra are introduced to determine the high n members of 6pnl (l = 0, 2) autoionizing series and are used to analyse the channel interactions among the autoionizing series in zero field. Furthermore, the saturation excitation technique is applied to the electric field case, in which the saturation spectra of Ba 6pnk (|M|= 0, 1) autoionizing Stark states are measured. Most of these saturation spectra are observed for the first time so far as we know, which indicate the mixing of the autoionizing states in the electric fields.展开更多
The normalized difference vegetation index(NDVI) is one of the key input variables for developing drought indices.However,the NDVI quickly saturates in high vegetation surfaces,and thus,the generalization of a drought...The normalized difference vegetation index(NDVI) is one of the key input variables for developing drought indices.However,the NDVI quickly saturates in high vegetation surfaces,and thus,the generalization of a drought index over different ecosystems becomes a challenge.This paper presents a novel,dynamic stretching algorithm to overcome the saturation effect in NDVI.A scaling transformation function to eliminate saturation effects when the vegetation fraction(VF) is large is proposed.Dynamic range adjustment is conducted using three coefficients,namely,the normalization factor(a),the stretching range controlling factor(m),and the stretching size controlling factor(e).The results show that the stretched NDVI(S-NDVI) is more sensitive to vegetation fraction than NDVI when the VF is large,ranging from 0.75 to 1.00.Moreover,the saturation effect in NDVI is effectively removed by using the S-NDVI.Further analysis suggests that there is a good linear correlation between the S-NDVI and the leaf area index(LAI).At the same time,the proposed S-NDVI significantly reduces or even eliminates the saturation effect over high biomass.A comparative analysis is performed between drought indices derived from NDVI and S-NDVI,respectively.In the experiment,reflectance data from the moderate resolution imaging spectroradiometer(MODIS) products and in-situ observation data from the meteorological sites at a regional scale are used.In this study,the coefficient of determination(R2) of the stretched drought index(S-DI) is above 0.5,indicating the reliability of the proposed algorithm with surface soil moisture content.Thus,the S-DI is suggested to be used as a drought index in extended regions,thus regional heterogeneity should be taken into account when applying stretching method.展开更多
During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock p...During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock physics theory to available sonic velocity logs to know the distribution of gas hydrate at site NGHP-02-11 and NGHP-02-13.Rock physics modeling using sonic velocity at well location shows that gas hydrate is distributed mainly within the depth intervals of 150-265 m and 100 -215 mbsf at site NGHP-02-11 and NGHP-02-13,respectively,with an average saturation of about 4%of the pore space and the maximum concentration of about 40%of the pore space at 250 m depth at site NGHP-02-11,and at site NGHP-02-13 an average saturation of about 2%of the pore space and the maximum concentration of about 20%of the pore space at 246 m depth,as gas hydrate is distributed mainly within 100-246 mbsf at this site.Saturation of gas hydrate estimated from the electrical resistivity method using density derived porosity and electrical resistivity logs from Archie's empirical formula shows high saturation compared to that from the sonic log.However,estimates of hydrate saturation based on sonic P-wave velocity may differ significantly from that based on resistivity,because gas and hydrate have higher resistivity than conductive pore fluid and sonic P-wave velocity shows strong effect on gas hydrate as a small amount of gas reduces the velocity significantly while increasing velocity due to the presence of hydrate.At site NGHP-02-11,gas hydrate saturation is in the range of 15%e30%,in two zones between 150-180 and 245-265 mbsf.Site NGHP-02-012 shows a gas hydrate saturation of 20%e30%in the zone between 100 and 207 mbsf.Site NGHP-02-13 shows a gas hydrate saturation up to 30%in the zone between 215 and 246 mbsf.Combined observations from rock physics modeling and Archie’s approximation show the gas hydrate concentrations are relatively low(<4%of the pore space)at the sites of the Mahanadi Basin in the turbidite channel system.展开更多
BISHOP’s effective stress or two state stress variables are unsatisfactory for unsaturated soils where one of fluid phases is discontinuous, so new expressions of effective stress should be founded. The approach for ...BISHOP’s effective stress or two state stress variables are unsatisfactory for unsaturated soils where one of fluid phases is discontinuous, so new expressions of effective stress should be founded. The approach for derivation was according to the principle of equilibrium of forces (i.e., the stress-sharing principle), and it was firstly validated by demonstrating TERZAGHI’s principle of effective stress. And then, the derivations were subdivided into four parts according to different pore air states: 1) air bubbles were spherical and suspended in pore water; 2) air bubbles were bound on soil skeleton; 3) air bubbles held almost the single section of pore; 4) air phase was continuous. The different formulae of effective stress were presented. Conclusions are drawn as follows: 1) For nearly-saturated soils, the "real" effective stress would be a little smaller than TERZAGHI’s effective stress; 2) For soils in which air phase is discontinuous in the form of bubbles, a new concept of pore air elastic pressure is put forward, and the total stress can be constituted by effective stress, pore water pressure and pore air elastic pressure; 3) For soils in which air phase is continuous, effective stress is equal to the value of the total stress plus suction; 4) Suction can be divided into two parts: one is the effect caused by additional pressure, and the other is the contract action by the "skin".展开更多
In this paper, we describe the saturation effect of a silicon germanium (SiGe) heterojunction bipolar transistor (HBT) fabricated on a thin silicon-on-insulator (SOI) with a step-by-step derivation of the model ...In this paper, we describe the saturation effect of a silicon germanium (SiGe) heterojunction bipolar transistor (HBT) fabricated on a thin silicon-on-insulator (SOI) with a step-by-step derivation of the model formulation. The collector injection width, the internal base-collector bias, and the hole density at the base-collector junction interface are analysed by considering the unique features of the internal and the external parts of the collector, as they are different from those of a bulk counterpart.展开更多
The ion saturation current is very important in probe theory, which can be used to measure the electron temperature and the floating potential. In this work, the effects of energetic ions on the ion saturation current...The ion saturation current is very important in probe theory, which can be used to measure the electron temperature and the floating potential. In this work, the effects of energetic ions on the ion saturation current are studied via particle-in-cell simulations. It is found that the energetic ions and background ions can be treated separately as different species, and they satisfy their individual Bohm criterion at the sheath edge. It is shown that the energetic ions can significantly affect the ion saturation current if their concentration is greater than root T-e/(gamma T-i2(i2)), where T-e is the electron temperature, and gamma(i2) and T-i2 represent the polytropic coefficient and temperature of energetic ions, respectively. As a result, the floating potential and the I-V characteristic profile are strongly influenced by the energetic ions. When the energetic ion current dominates the ion saturation current, an analysis of the ion saturation current will yield the energetic ion temperature rather than the electron temperature.展开更多
Soil samples were taken from different soil depth of different forest soil story in the Natural Reserve of Changbai Mountain, and their saturated conductivity and effective porosity were measured. The variation of sat...Soil samples were taken from different soil depth of different forest soil story in the Natural Reserve of Changbai Mountain, and their saturated conductivity and effective porosity were measured. The variation of saturated conductivity and effective porosity with different soil depth were studied by regressive analysis and a logarithmic model. The results were compared with the exponential model (Beven 1982). The results of comparison showed that the logarithmic model was more accurate and reasonable than the exponential model for forest catchment.展开更多
The dynamic effective shear strength of saturated sand under cyclic loading is discussed in this paper.The discussion includes the transient time depen- dency behaviors based on the analysis of the results obtained in...The dynamic effective shear strength of saturated sand under cyclic loading is discussed in this paper.The discussion includes the transient time depen- dency behaviors based on the analysis of the results obtained in conventional cyclic triaxial tests and cyclic torsional shear triaxial tests.It has been found that the dy- namic effective shear strength is composed of effective frictional resistance and viscous resistance,which are characterized by the strain rate dependent feature of strength magnitude,the coupling of consolidation stress with cyclic stress and the dependency of time needed to make the soil strength sufficiently mobilized,and can also be ex- pressed by the extended Mohr-Coulomb's law.The two strength parameters of the dynamic effective internal frictional angle φd and the dynamic viscosity coefficient η are determined.The former is unvaried for different number of cyclic loading,dy- namic stress form and consolidation stress ratio.And the later is unvaried for the different dynamic shear strain rate γt developed during the sand liquefaction,but increases with the increase of initial density of sand.The generalization of dynamic effective stress strength criterion in the 3-dimensional effective stress space is studied in detail for the purpose of its practical use.展开更多
The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple fa...The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple factors of the formation conditions make the parameter difficult to be accurately predicted by the conventional methods in tight gas reservoirs.In this study,a new model was derived to calculate Swir based on the capillary model and the fractal theory.The model incorporated different types of immobile water and considered the stress effect.The dead or stationary water(DSW) was considered in this model,which described the phenomena of water trapped in the dead-end pores due to detour flow and complex pore structures.The water film,stress effect and formation temperature were also considered in the proposed model.The results calculated by the proposed model are in a good agreement with the experimental data.This proves that for tight sandstone gas reservoirs the Swir calculated from the new model is more accurate.The irreducible water saturation calculated from the new model reveals that Swir is controlled by the critical capillary radius,DSW coefficient,effective stress and formation temperature.展开更多
The“tailing”effect caused by residual non-aqueous phase liquids(NAPLs)in porous aquifers is one of the frontiers in pollution hydrogeology research.Based on the current knowledge that the residual NAPLs is mainly co...The“tailing”effect caused by residual non-aqueous phase liquids(NAPLs)in porous aquifers is one of the frontiers in pollution hydrogeology research.Based on the current knowledge that the residual NAPLs is mainly controlled by the pore structure of soil,this study established a method for evaluating the residual saturation of NAPLs by investigating the fractal dimension of porous media.In this study,the soil column experiments of residual light NAPLs(LNAPLs)in sandy aquifer with different ratios of sands and soil were carried out,and the correlation between the fractal dimension of the medium,the residual of LNAPLs and the soil structure parameters are statistically analyzed,and its formation mechanism and main control factors are discussed.The results show that:Under our experimental condition:(1)the fractal dimension of the medium has a positive correlation with the residual saturation of NAPLs generally,and the optimal fitting function can be described by a quadratic model:S_(R)=192.02 D2-890.73 D+1040.8;(2)the dominant formation mechanism is:Smaller pores in the medium is related to larger fractal dimension,which leads to higher residual saturation of NAPLs;stronger heterogeneity of the medium is related to larger fractal dimension,which also leads to higher residual saturation of NAPLs;(3)the micro capillary pores characterized by fine sand are the main controlling factors of the formation mechanism.It is concluded that both the theory and the method of using fractal dimension of the medium to evaluate the residual saturation of NAPLs are feasible.This study provides a new perspective for the research of“tailing”effect of NAPLs in porous media aquifer.展开更多
The effects of ferrous ions on cathodic and anodic polarization behavior of the X60 steel in CO2 saturated salty water were studied by potentio - dynamic polarization method. The results show that the reducing current...The effects of ferrous ions on cathodic and anodic polarization behavior of the X60 steel in CO2 saturated salty water were studied by potentio - dynamic polarization method. The results show that the reducing current peak of cathodic polarization is affected significantly if FeCl2 is added to the salty solution of controlled pH, but not the anodic polarization. It is considered that the ferrous ions accelerate the formation of a protective ferrous carbonate film . Films formed by addition of ferrous ions and those formed by ferrous ions produced from steel corrosion have the same forming mechanism . The former can fully meet the formative condition of the film and can play the role of inhibitor .展开更多
Based on imbibition replacement of shut-in well in tight oil reservoirs, this paper expounds the principle of saturation rebalancing during the shut-in process after fracturing, establishes an optimization method for ...Based on imbibition replacement of shut-in well in tight oil reservoirs, this paper expounds the principle of saturation rebalancing during the shut-in process after fracturing, establishes an optimization method for shut-in time after horizontal well volume fracturing with the goal of shortening oil breakthrough time and achieving rapid oil breakthrough, and analyzes the influences of permeability, porosity, fracture half-length and fracturing fluid volume on the shut-in time. The oil and water imbibition displacement in the matrix and fractures occurs during the shut-in process of wells after fracturing. If the shut-in time is too short, the oil-water displacement is not sufficient, and the oil breakthrough time is long after the well is put into production. If the shut-in time is too long, the oil and water displacement is sufficient, but the energy dissipation in the formation near the bottom of the well is severe, and the flowing period is short and the production is low after the well is put into production. A rational shut-in time can help shorten the oil breakthrough time, extend the flowing period and increase the production of the well. The rational shut-in time is influenced by factors such as permeability, porosity, fracture half-length and fracturing fluid volume. The shortest and longest shut-in times are negatively correlated with porosity, permeability, and fracture half-length, and positively correlated with fracturing fluid volume. The pilot test in tight oil horizontal wells in the Songliao Basin, NE China, has confirmed that the proposed optimization method can effectively improve the development effect of horizontal well volume fracturing.展开更多
The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of soli...The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of solid matrix of porous medium including glass balls and aluminum foam are considered. The governing partial differential equations are simplified by dimensionless variables and similarity transformations, and are solved numerically by using a shooting method with the fourth-fifth-order Runge-Kutta integration technique. It is indicated that the increase of the porosity leads to the enhancement of heat transfer in the surface of the Marangoni boundary layer flow.展开更多
Free gas saturation is a key parameter for calculating shale gas reserves.The complex conductivity mechanism of shale reservoirs restricts the application of Archie's formula and its extended form for the evaluati...Free gas saturation is a key parameter for calculating shale gas reserves.The complex conductivity mechanism of shale reservoirs restricts the application of Archie's formula and its extended form for the evaluation of free gas saturation.Instead,a number of non-resistivity-based saturation evaluation methods suitable for shale gas reservoirs have been established,including core calibration(TOC method,clay content method),gas porosity cutoff,excavation effect and four-pore modeling.These methods,together with adsorbed phase porosity correction,are used to calculate the free gas saturation.These methods are applied to shale reservoirs of the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in the Sichuan Basin,southwestern China to test their applicability and accuracy.The results,when compared with measured data from core samples,show that the TOC-based core calibration is more accurate in evaluating free gas saturation in the entire shale gas interval,which is of great significance to the calculation of shale gas reserves.展开更多
The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like ...The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like screening model. Association pathway and dissocia-tion pathway were investigated by the comparison of several energies. The cleavage energy of Pd(PR3)2 complex was calculated, as well as the oxidative addition reaction barrier energy of Pd(PR3)n (n=1,2) with aryl bromide in N,N-dimethylformamide solvent. This study proved that the ligands volume possessed a great impact on the mechanism of oxidative addition: less bulky ligand palladium associated with aryl bromide via two donor ligands,but larger bulky ligand palladium coordinated via monoligand.展开更多
Objective To study effects of saturated hydrogen saline in preventing noise-induced hearing loss. Methods Fifteen guinea pigs were randomly divided into 3 groups (5 each), group one was for control, group two was tr...Objective To study effects of saturated hydrogen saline in preventing noise-induced hearing loss. Methods Fifteen guinea pigs were randomly divided into 3 groups (5 each), group one was for control, group two was treated with normal saline and group three was treated with saturated hydrogen saline, which was given intraperitoneally at 1 hour before noise exposure at 1 ml/100 g. One hundred rounds of impulse noise ( 157 dB SPL peak) were delivered as noise exposure. Immediately after exposure to impulse noise and on Days 1, 2, 4 and 8 following exposure, auditory brainstem response (ABR) thresholds were measured. Outer hair cell morphological changes and sueeinate dehydrogenase (SDH) activity were examined on Day 8 post-exposure. Results Immediately after noise exposure, ABR thresholds in saturated hydrogen saline treated animals were lower than the non-treated animals (P 〈 0.05 ). Microscopy showed little SDH staining, cell swelling and irregular cell arrangement in the non-treated or normal saline treated animals. Whereas in the saturated hydrogen saline treated animals, there was deep SDH staining with significantly reduced cell loss and more regular cellular arrangement compared to the other two groups. The surviving cells counts was 45.17 ±12.15 for non-treated animals, 44.50 ±10.02 for normal saline treated animals and,116.50±2.38 for animals treated with saturated hydrogen saline. While the count was similar between non-treated and normal saline treated animals, it was significantly higher in saturated sions Intraperitoneal injection of saturated hydrogen saline damage. hydrogen saline treated animals (P 〈 0.05). Concluappears to protect the cochlea against noise-induced damage.展开更多
Based on special antipolyelectrolyte effect of zwitterion polymer with same quantity of anionic and cationic charges, we developed two types of salt-responsive polyampholytes, one with high molecular weight and low ch...Based on special antipolyelectrolyte effect of zwitterion polymer with same quantity of anionic and cationic charges, we developed two types of salt-responsive polyampholytes, one with high molecular weight and low charge density(HvL) and the other with low molecular weight and high charge density(LvH), by inverse emulsion polymerization. Molecular structure and salt-responsiveness of them were characterized by 1 H-NMR and rheology measurement, respectively. HvL and LvH were evaluated in saturated-salt bentonite suspension and influences of their ratio on apparent viscosity and fluid loss were investigated as well. The results indicate that HvL is better at decreasing fluid loss while LvH is better at maintaining low viscosity. A saturated saltwater drilling fluid centering on HvL and Lv H with simple formula was designed and applied. It is indicated that salt-responsive polyampholytes are fundamentally better than AM-AMPS anionic copolymer and AM-AMPS-DMDAAC amphoteric copolymer. The saturated saltwater drilling fluid has excellent thermal stability, tolerance to bentonite and shale cuttings, and certain resistance to CaCl_2. Salt-responsive polyampholytes can be used in KCl-saturated drilling fluid, with universal adaptability.展开更多
The wave-induced local fluid flow mechanism is relevant to the complex heterogeneity of pore structures in rocks.The analysis of the local fluid flow mechanism is useful for accurately describing the wave propagation ...The wave-induced local fluid flow mechanism is relevant to the complex heterogeneity of pore structures in rocks.The analysis of the local fluid flow mechanism is useful for accurately describing the wave propagation characteristics in reservoir rocks.In the exploration and production of hydrocarbon reservoirs,the real stratum may be partially saturated with a multi-phase fluid mixture in general.Therefore,it is of great significance to investigate the wave velocity dispersion and attenuation features in relation to pore structures and fluids.In this work,the characteristics of fabric microstructures are obtained on the basis of pressure dependency of dry rock moduli using the effective medium theory.A novel anelasticity theoretical model for the wave propagation in a partially-saturated medium is presented by combining the extended Gurevich squirt-flow model and White patchysaturation theory.Numerical simulations are used to analyze wave propagation characteristics that depend on water saturation,external patchy diameter,and viscosity.We consider a tight sandstone from the Qingyang area of the Ordos Basin in west China and perform ultrasonic measurements under partial saturation states and different confining pressures,where the basic properties of the rock are obtained at the full gas saturation.The comparison of experimental data and theoretical modeling results shows a fairly good agreement,indicating that the new theory is effective.展开更多
The strange hadronic matter with nucleons, -hyperons and -hyperons is studied by using an effective nuclear model in a mean-field approximation. The density and strangeness fraction dependence of the effective baryon ...The strange hadronic matter with nucleons, -hyperons and -hyperons is studied by using an effective nuclear model in a mean-field approximation. The density and strangeness fraction dependence of the effective baryon masses as well as the saturation properties and stabilities of the strange hadronic matter are discussed.展开更多
Fe 100- x Ni x alloys of ultrafine particle with the average grain size of about 10 nm were synthesized by mechanically alloying process. The samples were investigated by X ray diffraction and measure...Fe 100- x Ni x alloys of ultrafine particle with the average grain size of about 10 nm were synthesized by mechanically alloying process. The samples were investigated by X ray diffraction and measurements of the saturation magnetization and coercivity force. Both b.c.c and f.c.c phase exist within a wide range for Fe 100- x Ni x , while x ≤45. The effective magnetic anisotropy K e was measured by applying the law of approach to saturation. The value of K e decreases with an increase of Ni content. It is noticed that the strain anisotropy makes a large contribution to the magnetic anisotropy. The estimation of grain size leads to the determination of the single domain critical size and domain wall energy. The exchange stiffness and exchange integral deduced from the relationship between the effective magnetic anisotropy and domain wall energy are in agreement with that calculated by other methods.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10574098), the Natural Science Foundation , (Grant No 05YFJMJC05200) of Tianjin, and the Scientific Research Fund of Zhejlang Provincial Education Department.
文摘Using a three-step laser saturation excitation technique, the saturation effects on the Ba 6pns (J = 1) and 6pad (J = 1, 3) autoionization spectra are observed systemically in zero field. These saturation spectra are introduced to determine the high n members of 6pnl (l = 0, 2) autoionizing series and are used to analyse the channel interactions among the autoionizing series in zero field. Furthermore, the saturation excitation technique is applied to the electric field case, in which the saturation spectra of Ba 6pnk (|M|= 0, 1) autoionizing Stark states are measured. Most of these saturation spectra are observed for the first time so far as we know, which indicate the mixing of the autoionizing states in the electric fields.
基金Under the auspices of National Natural Science Foundation of China(No.41071221)National Science Technology Support Program(No.2008BAC34B06)China Postdoctoral Science Foundation(No.20110490200)
文摘The normalized difference vegetation index(NDVI) is one of the key input variables for developing drought indices.However,the NDVI quickly saturates in high vegetation surfaces,and thus,the generalization of a drought index over different ecosystems becomes a challenge.This paper presents a novel,dynamic stretching algorithm to overcome the saturation effect in NDVI.A scaling transformation function to eliminate saturation effects when the vegetation fraction(VF) is large is proposed.Dynamic range adjustment is conducted using three coefficients,namely,the normalization factor(a),the stretching range controlling factor(m),and the stretching size controlling factor(e).The results show that the stretched NDVI(S-NDVI) is more sensitive to vegetation fraction than NDVI when the VF is large,ranging from 0.75 to 1.00.Moreover,the saturation effect in NDVI is effectively removed by using the S-NDVI.Further analysis suggests that there is a good linear correlation between the S-NDVI and the leaf area index(LAI).At the same time,the proposed S-NDVI significantly reduces or even eliminates the saturation effect over high biomass.A comparative analysis is performed between drought indices derived from NDVI and S-NDVI,respectively.In the experiment,reflectance data from the moderate resolution imaging spectroradiometer(MODIS) products and in-situ observation data from the meteorological sites at a regional scale are used.In this study,the coefficient of determination(R2) of the stretched drought index(S-DI) is above 0.5,indicating the reliability of the proposed algorithm with surface soil moisture content.Thus,the S-DI is suggested to be used as a drought index in extended regions,thus regional heterogeneity should be taken into account when applying stretching method.
文摘During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock physics theory to available sonic velocity logs to know the distribution of gas hydrate at site NGHP-02-11 and NGHP-02-13.Rock physics modeling using sonic velocity at well location shows that gas hydrate is distributed mainly within the depth intervals of 150-265 m and 100 -215 mbsf at site NGHP-02-11 and NGHP-02-13,respectively,with an average saturation of about 4%of the pore space and the maximum concentration of about 40%of the pore space at 250 m depth at site NGHP-02-11,and at site NGHP-02-13 an average saturation of about 2%of the pore space and the maximum concentration of about 20%of the pore space at 246 m depth,as gas hydrate is distributed mainly within 100-246 mbsf at this site.Saturation of gas hydrate estimated from the electrical resistivity method using density derived porosity and electrical resistivity logs from Archie's empirical formula shows high saturation compared to that from the sonic log.However,estimates of hydrate saturation based on sonic P-wave velocity may differ significantly from that based on resistivity,because gas and hydrate have higher resistivity than conductive pore fluid and sonic P-wave velocity shows strong effect on gas hydrate as a small amount of gas reduces the velocity significantly while increasing velocity due to the presence of hydrate.At site NGHP-02-11,gas hydrate saturation is in the range of 15%e30%,in two zones between 150-180 and 245-265 mbsf.Site NGHP-02-012 shows a gas hydrate saturation of 20%e30%in the zone between 100 and 207 mbsf.Site NGHP-02-13 shows a gas hydrate saturation up to 30%in the zone between 215 and 246 mbsf.Combined observations from rock physics modeling and Archie’s approximation show the gas hydrate concentrations are relatively low(<4%of the pore space)at the sites of the Mahanadi Basin in the turbidite channel system.
基金Project(50878191) supported by the National Natural Science Foundation of ChinaProject(Y12E090030) supported by Zhejiang Provincial Natural Science Foundation, China
文摘BISHOP’s effective stress or two state stress variables are unsatisfactory for unsaturated soils where one of fluid phases is discontinuous, so new expressions of effective stress should be founded. The approach for derivation was according to the principle of equilibrium of forces (i.e., the stress-sharing principle), and it was firstly validated by demonstrating TERZAGHI’s principle of effective stress. And then, the derivations were subdivided into four parts according to different pore air states: 1) air bubbles were spherical and suspended in pore water; 2) air bubbles were bound on soil skeleton; 3) air bubbles held almost the single section of pore; 4) air phase was continuous. The different formulae of effective stress were presented. Conclusions are drawn as follows: 1) For nearly-saturated soils, the "real" effective stress would be a little smaller than TERZAGHI’s effective stress; 2) For soils in which air phase is discontinuous in the form of bubbles, a new concept of pore air elastic pressure is put forward, and the total stress can be constituted by effective stress, pore water pressure and pore air elastic pressure; 3) For soils in which air phase is continuous, effective stress is equal to the value of the total stress plus suction; 4) Suction can be divided into two parts: one is the effect caused by additional pressure, and the other is the contract action by the "skin".
基金Project supported by the National Ministries and Commissions,China (Grant Nos.51308040203 and 6139801)the Fundamental Research Funds for the Central Universities,China (Grant Nos.72105499 and 72104089)the Basic Natural Science Research Program in Shaanxi Province,China (Grant No.2010JQ8008)
文摘In this paper, we describe the saturation effect of a silicon germanium (SiGe) heterojunction bipolar transistor (HBT) fabricated on a thin silicon-on-insulator (SOI) with a step-by-step derivation of the model formulation. The collector injection width, the internal base-collector bias, and the hole density at the base-collector junction interface are analysed by considering the unique features of the internal and the external parts of the collector, as they are different from those of a bulk counterpart.
基金Supported by the Program of Fusion Reactor Physics and Digital Tokamak with the Chinese Academy of Sciences'One-Three Five'Strategic Planningthe JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(NSFC No 11261140328 and NRF No 2012K2A2A6000443)+1 种基金the National ITER Program of China under Grant No 2015GB101003the National Natural Science Foundation of China under Grant Nos 11405215,11475223 and 11505236
文摘The ion saturation current is very important in probe theory, which can be used to measure the electron temperature and the floating potential. In this work, the effects of energetic ions on the ion saturation current are studied via particle-in-cell simulations. It is found that the energetic ions and background ions can be treated separately as different species, and they satisfy their individual Bohm criterion at the sheath edge. It is shown that the energetic ions can significantly affect the ion saturation current if their concentration is greater than root T-e/(gamma T-i2(i2)), where T-e is the electron temperature, and gamma(i2) and T-i2 represent the polytropic coefficient and temperature of energetic ions, respectively. As a result, the floating potential and the I-V characteristic profile are strongly influenced by the energetic ions. When the energetic ion current dominates the ion saturation current, an analysis of the ion saturation current will yield the energetic ion temperature rather than the electron temperature.
文摘Soil samples were taken from different soil depth of different forest soil story in the Natural Reserve of Changbai Mountain, and their saturated conductivity and effective porosity were measured. The variation of saturated conductivity and effective porosity with different soil depth were studied by regressive analysis and a logarithmic model. The results were compared with the exponential model (Beven 1982). The results of comparison showed that the logarithmic model was more accurate and reasonable than the exponential model for forest catchment.
基金The project supported by the National Natural Science Foundation of China (10172070)
文摘The dynamic effective shear strength of saturated sand under cyclic loading is discussed in this paper.The discussion includes the transient time depen- dency behaviors based on the analysis of the results obtained in conventional cyclic triaxial tests and cyclic torsional shear triaxial tests.It has been found that the dy- namic effective shear strength is composed of effective frictional resistance and viscous resistance,which are characterized by the strain rate dependent feature of strength magnitude,the coupling of consolidation stress with cyclic stress and the dependency of time needed to make the soil strength sufficiently mobilized,and can also be ex- pressed by the extended Mohr-Coulomb's law.The two strength parameters of the dynamic effective internal frictional angle φd and the dynamic viscosity coefficient η are determined.The former is unvaried for different number of cyclic loading,dy- namic stress form and consolidation stress ratio.And the later is unvaried for the different dynamic shear strain rate γt developed during the sand liquefaction,but increases with the increase of initial density of sand.The generalization of dynamic effective stress strength criterion in the 3-dimensional effective stress space is studied in detail for the purpose of its practical use.
基金supported by the National Science Foundation (51904324, 51674279, 51804328)the Major National Science and Technology Project (2017ZX05009-001, 2017ZX05072)+3 种基金the Key Research and Development Program (2018GSF116004)the China Postdoctoral Science Foundation (2019T120616)the Funding for Scientific Research of China University of Petroleum East China (YJ20170013)Graduate Innovative Engineering project (YCX2019023)。
文摘The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple factors of the formation conditions make the parameter difficult to be accurately predicted by the conventional methods in tight gas reservoirs.In this study,a new model was derived to calculate Swir based on the capillary model and the fractal theory.The model incorporated different types of immobile water and considered the stress effect.The dead or stationary water(DSW) was considered in this model,which described the phenomena of water trapped in the dead-end pores due to detour flow and complex pore structures.The water film,stress effect and formation temperature were also considered in the proposed model.The results calculated by the proposed model are in a good agreement with the experimental data.This proves that for tight sandstone gas reservoirs the Swir calculated from the new model is more accurate.The irreducible water saturation calculated from the new model reveals that Swir is controlled by the critical capillary radius,DSW coefficient,effective stress and formation temperature.
基金financially supported by projects of the National Natural Science Foundation(No.42007171)the Hebei Natural Science Foundation(No.D2021504034)。
文摘The“tailing”effect caused by residual non-aqueous phase liquids(NAPLs)in porous aquifers is one of the frontiers in pollution hydrogeology research.Based on the current knowledge that the residual NAPLs is mainly controlled by the pore structure of soil,this study established a method for evaluating the residual saturation of NAPLs by investigating the fractal dimension of porous media.In this study,the soil column experiments of residual light NAPLs(LNAPLs)in sandy aquifer with different ratios of sands and soil were carried out,and the correlation between the fractal dimension of the medium,the residual of LNAPLs and the soil structure parameters are statistically analyzed,and its formation mechanism and main control factors are discussed.The results show that:Under our experimental condition:(1)the fractal dimension of the medium has a positive correlation with the residual saturation of NAPLs generally,and the optimal fitting function can be described by a quadratic model:S_(R)=192.02 D2-890.73 D+1040.8;(2)the dominant formation mechanism is:Smaller pores in the medium is related to larger fractal dimension,which leads to higher residual saturation of NAPLs;stronger heterogeneity of the medium is related to larger fractal dimension,which also leads to higher residual saturation of NAPLs;(3)the micro capillary pores characterized by fine sand are the main controlling factors of the formation mechanism.It is concluded that both the theory and the method of using fractal dimension of the medium to evaluate the residual saturation of NAPLs are feasible.This study provides a new perspective for the research of“tailing”effect of NAPLs in porous media aquifer.
文摘The effects of ferrous ions on cathodic and anodic polarization behavior of the X60 steel in CO2 saturated salty water were studied by potentio - dynamic polarization method. The results show that the reducing current peak of cathodic polarization is affected significantly if FeCl2 is added to the salty solution of controlled pH, but not the anodic polarization. It is considered that the ferrous ions accelerate the formation of a protective ferrous carbonate film . Films formed by addition of ferrous ions and those formed by ferrous ions produced from steel corrosion have the same forming mechanism . The former can fully meet the formative condition of the film and can play the role of inhibitor .
基金Supported by China National Major Project of Science and Technology(2016ZX05046-004)PetroChina Major Project of Science and Technology(2017B-4905)PetroChina Jilin Oilfield Company Major Project of Science and Technology(JY21A2-12).
文摘Based on imbibition replacement of shut-in well in tight oil reservoirs, this paper expounds the principle of saturation rebalancing during the shut-in process after fracturing, establishes an optimization method for shut-in time after horizontal well volume fracturing with the goal of shortening oil breakthrough time and achieving rapid oil breakthrough, and analyzes the influences of permeability, porosity, fracture half-length and fracturing fluid volume on the shut-in time. The oil and water imbibition displacement in the matrix and fractures occurs during the shut-in process of wells after fracturing. If the shut-in time is too short, the oil-water displacement is not sufficient, and the oil breakthrough time is long after the well is put into production. If the shut-in time is too long, the oil and water displacement is sufficient, but the energy dissipation in the formation near the bottom of the well is severe, and the flowing period is short and the production is low after the well is put into production. A rational shut-in time can help shorten the oil breakthrough time, extend the flowing period and increase the production of the well. The rational shut-in time is influenced by factors such as permeability, porosity, fracture half-length and fracturing fluid volume. The shortest and longest shut-in times are negatively correlated with porosity, permeability, and fracture half-length, and positively correlated with fracturing fluid volume. The pilot test in tight oil horizontal wells in the Songliao Basin, NE China, has confirmed that the proposed optimization method can effectively improve the development effect of horizontal well volume fracturing.
基金Supported by the National Natural Science Foundation of China under Grant No 51305080
文摘The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of solid matrix of porous medium including glass balls and aluminum foam are considered. The governing partial differential equations are simplified by dimensionless variables and similarity transformations, and are solved numerically by using a shooting method with the fourth-fifth-order Runge-Kutta integration technique. It is indicated that the increase of the porosity leads to the enhancement of heat transfer in the surface of the Marangoni boundary layer flow.
文摘Free gas saturation is a key parameter for calculating shale gas reserves.The complex conductivity mechanism of shale reservoirs restricts the application of Archie's formula and its extended form for the evaluation of free gas saturation.Instead,a number of non-resistivity-based saturation evaluation methods suitable for shale gas reservoirs have been established,including core calibration(TOC method,clay content method),gas porosity cutoff,excavation effect and four-pore modeling.These methods,together with adsorbed phase porosity correction,are used to calculate the free gas saturation.These methods are applied to shale reservoirs of the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in the Sichuan Basin,southwestern China to test their applicability and accuracy.The results,when compared with measured data from core samples,show that the TOC-based core calibration is more accurate in evaluating free gas saturation in the entire shale gas interval,which is of great significance to the calculation of shale gas reserves.
基金This work was supported by the National Natural Science Foundation of China (No.20776089) and the New Century Excellent Talents Program of Ministry of Education (No.NCET-05-0783). The State Key Laboratory of Polymer Materials Engineering in Sichuan University was acknowledged for providing dmol3 modules and Prof. Ying Xue, Xiang-yuan Li, and Quan Zhu were grateful for the useful discussions.
文摘The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like screening model. Association pathway and dissocia-tion pathway were investigated by the comparison of several energies. The cleavage energy of Pd(PR3)2 complex was calculated, as well as the oxidative addition reaction barrier energy of Pd(PR3)n (n=1,2) with aryl bromide in N,N-dimethylformamide solvent. This study proved that the ligands volume possessed a great impact on the mechanism of oxidative addition: less bulky ligand palladium associated with aryl bromide via two donor ligands,but larger bulky ligand palladium coordinated via monoligand.
基金Supported by NFSC grant(30600700,30772413)Chinese PLA 12th five medical research grant
文摘Objective To study effects of saturated hydrogen saline in preventing noise-induced hearing loss. Methods Fifteen guinea pigs were randomly divided into 3 groups (5 each), group one was for control, group two was treated with normal saline and group three was treated with saturated hydrogen saline, which was given intraperitoneally at 1 hour before noise exposure at 1 ml/100 g. One hundred rounds of impulse noise ( 157 dB SPL peak) were delivered as noise exposure. Immediately after exposure to impulse noise and on Days 1, 2, 4 and 8 following exposure, auditory brainstem response (ABR) thresholds were measured. Outer hair cell morphological changes and sueeinate dehydrogenase (SDH) activity were examined on Day 8 post-exposure. Results Immediately after noise exposure, ABR thresholds in saturated hydrogen saline treated animals were lower than the non-treated animals (P 〈 0.05 ). Microscopy showed little SDH staining, cell swelling and irregular cell arrangement in the non-treated or normal saline treated animals. Whereas in the saturated hydrogen saline treated animals, there was deep SDH staining with significantly reduced cell loss and more regular cellular arrangement compared to the other two groups. The surviving cells counts was 45.17 ±12.15 for non-treated animals, 44.50 ±10.02 for normal saline treated animals and,116.50±2.38 for animals treated with saturated hydrogen saline. While the count was similar between non-treated and normal saline treated animals, it was significantly higher in saturated sions Intraperitoneal injection of saturated hydrogen saline damage. hydrogen saline treated animals (P 〈 0.05). Concluappears to protect the cochlea against noise-induced damage.
基金Supported by the China National Science and Technology Major Project(2017ZX05009-003,2016ZX05020-004,2016ZX05040-005)
文摘Based on special antipolyelectrolyte effect of zwitterion polymer with same quantity of anionic and cationic charges, we developed two types of salt-responsive polyampholytes, one with high molecular weight and low charge density(HvL) and the other with low molecular weight and high charge density(LvH), by inverse emulsion polymerization. Molecular structure and salt-responsiveness of them were characterized by 1 H-NMR and rheology measurement, respectively. HvL and LvH were evaluated in saturated-salt bentonite suspension and influences of their ratio on apparent viscosity and fluid loss were investigated as well. The results indicate that HvL is better at decreasing fluid loss while LvH is better at maintaining low viscosity. A saturated saltwater drilling fluid centering on HvL and Lv H with simple formula was designed and applied. It is indicated that salt-responsive polyampholytes are fundamentally better than AM-AMPS anionic copolymer and AM-AMPS-DMDAAC amphoteric copolymer. The saturated saltwater drilling fluid has excellent thermal stability, tolerance to bentonite and shale cuttings, and certain resistance to CaCl_2. Salt-responsive polyampholytes can be used in KCl-saturated drilling fluid, with universal adaptability.
基金supported by the National Natural Science Foundation of China(Grant no.41704109)the Jiangsu Province Outstanding Youth Fund Project(Grant no.BK20200021).
文摘The wave-induced local fluid flow mechanism is relevant to the complex heterogeneity of pore structures in rocks.The analysis of the local fluid flow mechanism is useful for accurately describing the wave propagation characteristics in reservoir rocks.In the exploration and production of hydrocarbon reservoirs,the real stratum may be partially saturated with a multi-phase fluid mixture in general.Therefore,it is of great significance to investigate the wave velocity dispersion and attenuation features in relation to pore structures and fluids.In this work,the characteristics of fabric microstructures are obtained on the basis of pressure dependency of dry rock moduli using the effective medium theory.A novel anelasticity theoretical model for the wave propagation in a partially-saturated medium is presented by combining the extended Gurevich squirt-flow model and White patchysaturation theory.Numerical simulations are used to analyze wave propagation characteristics that depend on water saturation,external patchy diameter,and viscosity.We consider a tight sandstone from the Qingyang area of the Ordos Basin in west China and perform ultrasonic measurements under partial saturation states and different confining pressures,where the basic properties of the rock are obtained at the full gas saturation.The comparison of experimental data and theoretical modeling results shows a fairly good agreement,indicating that the new theory is effective.
文摘The strange hadronic matter with nucleons, -hyperons and -hyperons is studied by using an effective nuclear model in a mean-field approximation. The density and strangeness fraction dependence of the effective baryon masses as well as the saturation properties and stabilities of the strange hadronic matter are discussed.
文摘Fe 100- x Ni x alloys of ultrafine particle with the average grain size of about 10 nm were synthesized by mechanically alloying process. The samples were investigated by X ray diffraction and measurements of the saturation magnetization and coercivity force. Both b.c.c and f.c.c phase exist within a wide range for Fe 100- x Ni x , while x ≤45. The effective magnetic anisotropy K e was measured by applying the law of approach to saturation. The value of K e decreases with an increase of Ni content. It is noticed that the strain anisotropy makes a large contribution to the magnetic anisotropy. The estimation of grain size leads to the determination of the single domain critical size and domain wall energy. The exchange stiffness and exchange integral deduced from the relationship between the effective magnetic anisotropy and domain wall energy are in agreement with that calculated by other methods.