Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a...Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.展开更多
On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 tha...On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 that struck the nearby city of Elbistan 9 h later.To study the characteristics of surface deformation caused by this event and the influence of fault rupture,this study calculated the static coseismic deformation of 56 stations and dynamic displacement waveforms of 15 stations using data from the Turkish national fixed global navigation satellite system(GNSS)network.A maximum static coseismic displacement of 0.38 m for the M_(W)7.8 Kahramanmaras earthquake was observed at station ANTE,36 km from the epicenter,and a maximum dynamic coseismic displacement of 4.4 m for the M_(W)7.6 Elbistan earthquake was observed at station EKZ1,5 km from the epicenter.The rupture-slip distributions of the two earthquakes were inverted using GNSS coseismic deformation as a constraint.The results showed that the Kahramanmaras earthquake rupture segment was distinct and exposed on the ground,resulting in significant rupture slip along the Amanos and Pazarcik fault segments of the East Anatolian Fault.The maximum slip in the Pazarcik fault segment was 10.7 m,and rupture occurred at depths of 0–15 km.In the Cardak fault region,the Elbistan earthquake caused significant ruptures at depths of 0–12 km,with the largest amount of slip reaching 11.6 m.The Coulomb stress change caused by the Kahramanmaras earthquake rupture along the Cardak fault segment was approximately 2 bars,and the area of increased Coulomb stress corresponded to the subsequent rupture region of the M_(W)7.6 earthquake.Thus,it is likely that the M_(W)7.8 earthquake triggered or promoted the M_(W)7.6 earthquake.Based on the cumulative stress impact of the M_(W)7.8 and M_(W)7.6 events,the southwestern segment of the East Anatolian Fault,specifically the Amanos fault segment,experienced a Coulomb rupture stress change exceeding 2 bars,warranting further attention to assess its future seismic hazard risk.展开更多
On May 12,2008,an Mw7.9 earthquake occurred in Wenchuan County,Sichuan Province,China.Movement of Yingxiu–Beichuan Fault in the Longmenshan Fault Zone was considered to be the main cause of the earthquake.Earthquakes...On May 12,2008,an Mw7.9 earthquake occurred in Wenchuan County,Sichuan Province,China.Movement of Yingxiu–Beichuan Fault in the Longmenshan Fault Zone was considered to be the main cause of the earthquake.Earthquakes are closely related to fault activities.Therefore,studying the strain distribution and evolution process around active fault zones is important to the understanding of seismic activities.In this study,we conduct laboratory experiments with uniaxial compression applied to marble sheets with intentionally fabricated cracks.The speckle patterns of the rock samples under different loading conditions are recorded in real time by a digital camera.To calculate the deformation fields of the deliberately cracked marble sheets during different stages of the loading processes,the recorded images are processed by the digital image correlation method.The distribution and variation of the displacement and strain are further analyzed in order to understand the strain localization of and observed damage in the experimental fracture zones.Finally,we compare these laboratory results with the GPS-observed coseismic displacements during the 2008 Wenchuan earthquake,to assess the consistency between our laboratory observations and the field observations of the earthquake,but also to suggest how laboratory results can improve thinking about how earthquake patterns do and do not reflect fault patterns.展开更多
The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two m...The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two modes of plastic deformation during tensile test in the Fe-Mn-C TWIP steel: dislocation gliding and deformation twins. During the process of tensile deformation, secondary deformed twins are found. Inclusions have played a role in the course of ductile fracture, and microcracks initiate from inclusions and twin-twin intersections.展开更多
selecting several typical DSS 00Cr22Ni5Mo3N,00Cr21Ni2Mn5N and 00Cr25Ni7Mo4N as research materials,hot ductility characteristic of DSS was studied and microstructure evolution during hot compression was observed.The re...selecting several typical DSS 00Cr22Ni5Mo3N,00Cr21Ni2Mn5N and 00Cr25Ni7Mo4N as research materials,hot ductility characteristic of DSS was studied and microstructure evolution during hot compression was observed.The results show that the optimum hot ductility temperature range of DSS is 1 050~1 200℃.00Cr25Ni7Mc4N exhibits the worst hot ductility and 00Cr21Ni2Mn5N has similar hot ductility to 00Cr22Ni5Mo3N.During hot compression,austenite of DSS mainly occurs dynamic recovery,the ferrite of 00Cr22Ni5Mo3N,00Cr21Ni2Mn5N can perform dynamic recovery and recrystallization,but only dynamic recovery can be observed in the ferrite of 00Cr25Ni7Mo4N.展开更多
Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discriminati...Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discrimination factor of wavelet decomposition, we analyze the variation rule of normal background and noise data from Shandong digital deformation observation data. The research results indicate that: a) 1/4 daily wave, semi-diurnal tide wave, daily wave and half lunar wave and so on quasi-periodic signal exist in the detail decomposing signal of wavelet when scale are equal to 2, 3 and 4; b) The amplitude of detail decomposing signal is the biggest when scale is equal to 3; c) The detail decomposing signal contains mainly noise corresponding to scale 1 and 5, respectively; d) We may trace the abnormal precursory which is related to earthquake by analyzing non-earthquake wavelet decomposing signal whose scale is specified from digital deformation observation data.展开更多
The deformation responses of surface cap rocks of Underground Gas Storage( UGS) in Hutubi,Xinjiang during gas injection and production were investigated with the GPS data recorded by the deformation monitoring network...The deformation responses of surface cap rocks of Underground Gas Storage( UGS) in Hutubi,Xinjiang during gas injection and production were investigated with the GPS data recorded by the deformation monitoring network,which includes 13 observation sites. The time series of three-dimensional deformation of the surface cap rocks was obtained in the UGS operation process,and the deformation signals in different phases were identified by combining the GPS data with wellhead pressure data. The results show that the respiration response of surface cap rock deformation is obvious during gas injection and production of UGS,and the surface deformation due to a 1MPa change of wellhead pressure is 1. 02 mm in gas injection and 1. 24 mm in gas production horizontally, and- 1. 11 mm in gas injection and 0. 86 mm in gas production vertically.展开更多
This article first introduces the basic knowledge of the deformation measurement, discusses the causes and types of building deformation, tasks of deformation observation as well as its contents, methods, principles, ...This article first introduces the basic knowledge of the deformation measurement, discusses the causes and types of building deformation, tasks of deformation observation as well as its contents, methods, principles, process, and describes the main functions and contents of the deformation monitoring. In particular, this thesis describes the building settlement observation specifically and in great detail. It has carried out the analysis and research on the deformation measurement level of the building subsidence, as well as put forward requirements on the benchmark, layout and observation. Then referring to Shen Tie victory home 9 # building settlement measurement data and process, this paper explains the settlement observation level of Shen Tie victory home 9 # building level of choice and observation methods for embedding field bench mark and observation point thus to determine the subsidence and sedimentation rate.展开更多
Based on GPS velocity during 1999-2007,GPS baseline time series on large scale during1999-2008 and cross-fault leveling data during 1985-2008,the paper makes some analysis and discussion to study and summarize the mov...Based on GPS velocity during 1999-2007,GPS baseline time series on large scale during1999-2008 and cross-fault leveling data during 1985-2008,the paper makes some analysis and discussion to study and summarize the movement,tectonic deformation and strain accumulation evolution characteristics of the Longmenshan fault and the surrounding area before the MS8. 0 Wenchuan earthquake,as well as the possible physical mechanism late in the seismic cycle of the Wenchuan earthquake. Multiple results indicate that:GPS velocity profiles show that obvious continuous deformation across the eastern Qinghai-Tibetan Plateau before the earthquake was distributed across a zone at least 500 km wide,while there was little deformation in Sichuan Basin and Longmenshan fault zone,which means that the eastern Qinghai-Tibetan Plateau provides energy accumulation for locked Longmenshan fault zone continuously. GPS strain rates show that the east-west compression deformation was larger in the northwest of the mid-northern segment of the Longmenshan fault zone,and deformation amplitude decreased gradually from far field to near fault zone,and there was little deformation in fault zone. The east-west compression deformation was significant surrounding the southwestern segment of the Longmenshan fault zone,and strain accumulation rate was larger than that of mid-northern segment.Fault locking indicates nearly whole Longmenshan fault was locked before the earthquake except the source of the earthquake which was weakly locked,and a 20 km width patch in southwestern segment between 12 km to 22. 5 km depth was in creeping state. GPS baseline time series in northeast direction on large scale became compressive generally from 2005 in the North-South Seismic Belt,which reflects that relative compression deformation enhances. The cross-fault leveling data show that annual vertical change rate and deformation trend accumulation rate in the Longmenshan fault zone were little,which indicates that vertical activity near the fault was very weak and the fault was tightly locked. According to analyses of GPS and cross-fault leveling data before the Wenchuan earthquake,we consider that the Longmenshan fault is tightly locked from the surface to the deep,and the horizontal and vertical deformation are weak surrounding the fault in relatively small-scale crustal deformation. The process of weak deformation may be slow,and weak deformation area may be larger when large earthquake is coming. Continuous and slow compression deformation across eastern Qinghai-Tibetan Plateau before the earthquake provides dynamic support for strain accumulation in the Longmenshan fault zone in relative large-scale crustal deformation.展开更多
On January 21, 2016, a strong earthquake with a magnitude of Ms6.4 happened at Menyuan, Qinghai Province of China. In almost the same place, there was another strong earthquake happened in 1986, with similar magnitude...On January 21, 2016, a strong earthquake with a magnitude of Ms6.4 happened at Menyuan, Qinghai Province of China. In almost the same place, there was another strong earthquake happened in 1986, with similar magnitude and focal mechanism. In this paper, we analyze the characteristics of regional crustal deformation before the 2016 Menyuan Ms6.4 earth- quake by using the data from 10 continuous Global Positioning System (GPS) stations and 74 campaign-mode GPS stations within 200 km of this event: (a) Based on the velocity field from over ten years GPS observations, a regional strain rate field is calculated. The results indicate that the crustal strain rate and seismic moment accumulation rate of the Qilian- Haiyuan active fault, which is the seismogenic tectonics of the event, are significantly higher than the surrounding regions. In a 20 km~ 20 km area around the seismogenic region, the maximum and minimum principal strain rates are 21.5 nanostrain/a (NW-SE extension) and -46.6 nanostrain/a (NE-SW compression), respectively, and the seismic moment accumulation rates is 17.4 Nm/a. The direction of principal compression is consistent with the focal mechanism of this event. (b) Based on the position time series of the continuous GPS stations for a time-span of about 6 years before the event, we calculate the strain time series. The results show that the dilatation of the seismogenic region is continuously reduced with a "non-linear" trend since 2010, which means the seismogenic region has been in a state of compression. However, about 2-3 months before the event, both the dilatation and maximum shear strain show significant inverse trends. These abnormal changes of crustal deformation may reflect the non-linear adjustment of the stress-strain accumulation of the seismogenic region, when the accumulation is approaching the critical value of rupture.展开更多
This study analyzes data regarding cross-fault deformations within the seismogenic zone of the 2016 Qinghai Menyuan Ms6.4 earthquake and its surrounding area. The results showed that the tendency anomaly sites near th...This study analyzes data regarding cross-fault deformations within the seismogenic zone of the 2016 Qinghai Menyuan Ms6.4 earthquake and its surrounding area. The results showed that the tendency anomaly sites near the epicenter had relatively long anomaly durations prior to the earthquake, while sudden-jumping anomaly sites started to increase in the middle eastern Qilian Mountains approximately a year before the earthquake and continued to increase and migrate towards the vicinity of the epicenter two to six months before the earthquake. Intensive observations a few days after the earthquake indicated that abnormal returns and turns before the earthquake were significant, but all had small amplitudes, and the coseismic effect was generally minor. In addition, the post-seismic tendency analysis of individual cross faults in the Qilian Mountain fault zone revealed an accelerating thrust tendency at all cross-fault sites in the middle Qilian Mountains after the 2008 Wenchuan Ms8.0 earthquake. This indicates that the Wenchuan mega-earthquake exerted a great impact on the dynamic environment of the northeastern margin of the Qinghai-Tibet plate and significantly enhanced the extrusion effect of the Indian plate on the middle Qilian Mountains, generating favorable conditions for the occurrence of Menyuan thrust earthquakes.展开更多
At present,there are few technologies applied to in situ observation of seabed deformation,among which the micro-electromechanical accelerometer-array(hereinafter referred to as accelerometers array)is a very advantag...At present,there are few technologies applied to in situ observation of seabed deformation,among which the micro-electromechanical accelerometer-array(hereinafter referred to as accelerometers array)is a very advantageous measurement method,with both commercial products and successful application cases.However,the coupling effect between accelerometer-array and sur-rounding soil and the linkage effect of accelerometer-array itself during the deformation may influence the accuracy and reliability of the measurement data.A simulation test chamber was designed and processed,and four groups of simulation tests were carried out to explore the coupling effect and linkage effect of accelerometer-array in the soil with different degree of consolidation.The results show that the accelerometer-array and the soil coupled well,and the coupling effect is positively correlated with the degree of soil consoli-dation.The ratio of accumulative deviation to soil lateral deformation is high at the initial stage of deformation(0-50 mm)and reduced with the continuous increase of deformation(>100 mm).In the process of liquefied soil deformation,the linkage effect of accelerometer array can be ignored,and is negatively correlated with the degree of soil consolidation.A concept to improve the measurement accu-racy of accelerometer-array in different seafloor failure deformation modes is proposed.The research results provide references for the modification of accelerometer-array and the improvement for other flexible rod-shaped deformation sensors.展开更多
Calculation of repeated observation data at the densified GPS monitoring network in northeastern area of Pamir together with data from IGS stations in the periphery of the area yielded the movement rate of more than 4...Calculation of repeated observation data at the densified GPS monitoring network in northeastern area of Pamir together with data from IGS stations in the periphery of the area yielded the movement rate of more than 40 GPS station sites in the area, and, hence, the recent crustal deformation rate pattern and time series of fiducial GPS stations in the area were obtained. The result indicates that the principal movement direction of the GPS station sites is NNW, basically diagonal to the strike of Tianshan fold belt, i.e. a normal compression occurs in the Tianshan region. The movement pattern near Jiashi and its southwestern zone is some different from that of station sites in their surrounding areas, indicating a certain relation of tectonic deformation in Jiashi area to seismic activity during last years. The movement rate of station sites in the periphery of Tarim basin less varies and its direction is basically consistent. It indicates less or basically no deformation within Tarim basin.展开更多
On the basis of Discontinuous Deformation Analysis (DDA), and considering the moderate intrusion of specific block boundaries to different extents, the first-order block motion model is established for the northeaster...On the basis of Discontinuous Deformation Analysis (DDA), and considering the moderate intrusion of specific block boundaries to different extents, the first-order block motion model is established for the northeastern margin of Qinghai-Xizang(Tibet) block and the kinematical model for depicting deformation of small regions as well by using GPS observations of three periods (1991, 1999 and 2001). By simulating, we obtained the motion features of the first-order blocks between the large WWN faults on the sides of the studied region, the distribution features of the principal strain rate field and the inhomogeneous motion features with space-time of the faults in the northern boundary of the Qinghai-Xizang (Tibet) block.展开更多
基金the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_0621)the National Natural Science Foundation of China(Grant No.52209130)Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.
基金Science and Technology Development Fund of Wuhan Institute of Earth Observation,China Earthquake Administration(No.302021-21)Open Fund of Wuhan,Gravitation and Solid Earth Tides,National Observation and Research Station(WHYWZ202218).
文摘On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 that struck the nearby city of Elbistan 9 h later.To study the characteristics of surface deformation caused by this event and the influence of fault rupture,this study calculated the static coseismic deformation of 56 stations and dynamic displacement waveforms of 15 stations using data from the Turkish national fixed global navigation satellite system(GNSS)network.A maximum static coseismic displacement of 0.38 m for the M_(W)7.8 Kahramanmaras earthquake was observed at station ANTE,36 km from the epicenter,and a maximum dynamic coseismic displacement of 4.4 m for the M_(W)7.6 Elbistan earthquake was observed at station EKZ1,5 km from the epicenter.The rupture-slip distributions of the two earthquakes were inverted using GNSS coseismic deformation as a constraint.The results showed that the Kahramanmaras earthquake rupture segment was distinct and exposed on the ground,resulting in significant rupture slip along the Amanos and Pazarcik fault segments of the East Anatolian Fault.The maximum slip in the Pazarcik fault segment was 10.7 m,and rupture occurred at depths of 0–15 km.In the Cardak fault region,the Elbistan earthquake caused significant ruptures at depths of 0–12 km,with the largest amount of slip reaching 11.6 m.The Coulomb stress change caused by the Kahramanmaras earthquake rupture along the Cardak fault segment was approximately 2 bars,and the area of increased Coulomb stress corresponded to the subsequent rupture region of the M_(W)7.6 earthquake.Thus,it is likely that the M_(W)7.8 earthquake triggered or promoted the M_(W)7.6 earthquake.Based on the cumulative stress impact of the M_(W)7.8 and M_(W)7.6 events,the southwestern segment of the East Anatolian Fault,specifically the Amanos fault segment,experienced a Coulomb rupture stress change exceeding 2 bars,warranting further attention to assess its future seismic hazard risk.
文摘On May 12,2008,an Mw7.9 earthquake occurred in Wenchuan County,Sichuan Province,China.Movement of Yingxiu–Beichuan Fault in the Longmenshan Fault Zone was considered to be the main cause of the earthquake.Earthquakes are closely related to fault activities.Therefore,studying the strain distribution and evolution process around active fault zones is important to the understanding of seismic activities.In this study,we conduct laboratory experiments with uniaxial compression applied to marble sheets with intentionally fabricated cracks.The speckle patterns of the rock samples under different loading conditions are recorded in real time by a digital camera.To calculate the deformation fields of the deliberately cracked marble sheets during different stages of the loading processes,the recorded images are processed by the digital image correlation method.The distribution and variation of the displacement and strain are further analyzed in order to understand the strain localization of and observed damage in the experimental fracture zones.Finally,we compare these laboratory results with the GPS-observed coseismic displacements during the 2008 Wenchuan earthquake,to assess the consistency between our laboratory observations and the field observations of the earthquake,but also to suggest how laboratory results can improve thinking about how earthquake patterns do and do not reflect fault patterns.
基金supported by the National High-Tech Research and Development Program of China (No.2008AA03E502)the Science and Technology Support Program of China (No.2006BAE03A06)
文摘The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two modes of plastic deformation during tensile test in the Fe-Mn-C TWIP steel: dislocation gliding and deformation twins. During the process of tensile deformation, secondary deformed twins are found. Inclusions have played a role in the course of ductile fracture, and microcracks initiate from inclusions and twin-twin intersections.
文摘selecting several typical DSS 00Cr22Ni5Mo3N,00Cr21Ni2Mn5N and 00Cr25Ni7Mo4N as research materials,hot ductility characteristic of DSS was studied and microstructure evolution during hot compression was observed.The results show that the optimum hot ductility temperature range of DSS is 1 050~1 200℃.00Cr25Ni7Mc4N exhibits the worst hot ductility and 00Cr21Ni2Mn5N has similar hot ductility to 00Cr22Ni5Mo3N.During hot compression,austenite of DSS mainly occurs dynamic recovery,the ferrite of 00Cr22Ni5Mo3N,00Cr21Ni2Mn5N can perform dynamic recovery and recrystallization,but only dynamic recovery can be observed in the ferrite of 00Cr25Ni7Mo4N.
基金Natural Science Foundation of Shandong Province (Y2000E08) the bargain item of China Earthquake Administration in the year 2002.
文摘Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discrimination factor of wavelet decomposition, we analyze the variation rule of normal background and noise data from Shandong digital deformation observation data. The research results indicate that: a) 1/4 daily wave, semi-diurnal tide wave, daily wave and half lunar wave and so on quasi-periodic signal exist in the detail decomposing signal of wavelet when scale are equal to 2, 3 and 4; b) The amplitude of detail decomposing signal is the biggest when scale is equal to 3; c) The detail decomposing signal contains mainly noise corresponding to scale 1 and 5, respectively; d) We may trace the abnormal precursory which is related to earthquake by analyzing non-earthquake wavelet decomposing signal whose scale is specified from digital deformation observation data.
基金sponsored by the National Natural Science Foundation of China(41474097,41304067,47474016,41474051,41404015)
文摘The deformation responses of surface cap rocks of Underground Gas Storage( UGS) in Hutubi,Xinjiang during gas injection and production were investigated with the GPS data recorded by the deformation monitoring network,which includes 13 observation sites. The time series of three-dimensional deformation of the surface cap rocks was obtained in the UGS operation process,and the deformation signals in different phases were identified by combining the GPS data with wellhead pressure data. The results show that the respiration response of surface cap rock deformation is obvious during gas injection and production of UGS,and the surface deformation due to a 1MPa change of wellhead pressure is 1. 02 mm in gas injection and 1. 24 mm in gas production horizontally, and- 1. 11 mm in gas injection and 0. 86 mm in gas production vertically.
文摘This article first introduces the basic knowledge of the deformation measurement, discusses the causes and types of building deformation, tasks of deformation observation as well as its contents, methods, principles, process, and describes the main functions and contents of the deformation monitoring. In particular, this thesis describes the building settlement observation specifically and in great detail. It has carried out the analysis and research on the deformation measurement level of the building subsidence, as well as put forward requirements on the benchmark, layout and observation. Then referring to Shen Tie victory home 9 # building settlement measurement data and process, this paper explains the settlement observation level of Shen Tie victory home 9 # building level of choice and observation methods for embedding field bench mark and observation point thus to determine the subsidence and sedimentation rate.
基金supported by the National Key R&D Program of China(2018YFC1503606 2017YFC1500502)Earthquake Tracking Task(2019010215)
文摘Based on GPS velocity during 1999-2007,GPS baseline time series on large scale during1999-2008 and cross-fault leveling data during 1985-2008,the paper makes some analysis and discussion to study and summarize the movement,tectonic deformation and strain accumulation evolution characteristics of the Longmenshan fault and the surrounding area before the MS8. 0 Wenchuan earthquake,as well as the possible physical mechanism late in the seismic cycle of the Wenchuan earthquake. Multiple results indicate that:GPS velocity profiles show that obvious continuous deformation across the eastern Qinghai-Tibetan Plateau before the earthquake was distributed across a zone at least 500 km wide,while there was little deformation in Sichuan Basin and Longmenshan fault zone,which means that the eastern Qinghai-Tibetan Plateau provides energy accumulation for locked Longmenshan fault zone continuously. GPS strain rates show that the east-west compression deformation was larger in the northwest of the mid-northern segment of the Longmenshan fault zone,and deformation amplitude decreased gradually from far field to near fault zone,and there was little deformation in fault zone. The east-west compression deformation was significant surrounding the southwestern segment of the Longmenshan fault zone,and strain accumulation rate was larger than that of mid-northern segment.Fault locking indicates nearly whole Longmenshan fault was locked before the earthquake except the source of the earthquake which was weakly locked,and a 20 km width patch in southwestern segment between 12 km to 22. 5 km depth was in creeping state. GPS baseline time series in northeast direction on large scale became compressive generally from 2005 in the North-South Seismic Belt,which reflects that relative compression deformation enhances. The cross-fault leveling data show that annual vertical change rate and deformation trend accumulation rate in the Longmenshan fault zone were little,which indicates that vertical activity near the fault was very weak and the fault was tightly locked. According to analyses of GPS and cross-fault leveling data before the Wenchuan earthquake,we consider that the Longmenshan fault is tightly locked from the surface to the deep,and the horizontal and vertical deformation are weak surrounding the fault in relatively small-scale crustal deformation. The process of weak deformation may be slow,and weak deformation area may be larger when large earthquake is coming. Continuous and slow compression deformation across eastern Qinghai-Tibetan Plateau before the earthquake provides dynamic support for strain accumulation in the Longmenshan fault zone in relative large-scale crustal deformation.
基金supported by the National Science Foundation of China(41474090)Science for Earthquake Resilience(XH14063)the State Key Laboratory of Earthquake Dynamics(LED2013A02)
文摘On January 21, 2016, a strong earthquake with a magnitude of Ms6.4 happened at Menyuan, Qinghai Province of China. In almost the same place, there was another strong earthquake happened in 1986, with similar magnitude and focal mechanism. In this paper, we analyze the characteristics of regional crustal deformation before the 2016 Menyuan Ms6.4 earth- quake by using the data from 10 continuous Global Positioning System (GPS) stations and 74 campaign-mode GPS stations within 200 km of this event: (a) Based on the velocity field from over ten years GPS observations, a regional strain rate field is calculated. The results indicate that the crustal strain rate and seismic moment accumulation rate of the Qilian- Haiyuan active fault, which is the seismogenic tectonics of the event, are significantly higher than the surrounding regions. In a 20 km~ 20 km area around the seismogenic region, the maximum and minimum principal strain rates are 21.5 nanostrain/a (NW-SE extension) and -46.6 nanostrain/a (NE-SW compression), respectively, and the seismic moment accumulation rates is 17.4 Nm/a. The direction of principal compression is consistent with the focal mechanism of this event. (b) Based on the position time series of the continuous GPS stations for a time-span of about 6 years before the event, we calculate the strain time series. The results show that the dilatation of the seismogenic region is continuously reduced with a "non-linear" trend since 2010, which means the seismogenic region has been in a state of compression. However, about 2-3 months before the event, both the dilatation and maximum shear strain show significant inverse trends. These abnormal changes of crustal deformation may reflect the non-linear adjustment of the stress-strain accumulation of the seismogenic region, when the accumulation is approaching the critical value of rupture.
基金supported by the Youth Seismic Regime Tracking Project in the Year of 2016,China Earthquake Administration(2016010217)the Special Earthquake Research Project granted by the China Earthquake Administration(201508009)
文摘This study analyzes data regarding cross-fault deformations within the seismogenic zone of the 2016 Qinghai Menyuan Ms6.4 earthquake and its surrounding area. The results showed that the tendency anomaly sites near the epicenter had relatively long anomaly durations prior to the earthquake, while sudden-jumping anomaly sites started to increase in the middle eastern Qilian Mountains approximately a year before the earthquake and continued to increase and migrate towards the vicinity of the epicenter two to six months before the earthquake. Intensive observations a few days after the earthquake indicated that abnormal returns and turns before the earthquake were significant, but all had small amplitudes, and the coseismic effect was generally minor. In addition, the post-seismic tendency analysis of individual cross faults in the Qilian Mountain fault zone revealed an accelerating thrust tendency at all cross-fault sites in the middle Qilian Mountains after the 2008 Wenchuan Ms8.0 earthquake. This indicates that the Wenchuan mega-earthquake exerted a great impact on the dynamic environment of the northeastern margin of the Qinghai-Tibet plate and significantly enhanced the extrusion effect of the Indian plate on the middle Qilian Mountains, generating favorable conditions for the occurrence of Menyuan thrust earthquakes.
基金funded by the National Natural Science Foundation of China(Nos.42022052,42107207)the Shan-dong Provincial Natural Science Foundation(Nos.ZR2020QD067,ZR2020YQ29)the Postdoctoral Science Foundation of China(No.2019M662474).
文摘At present,there are few technologies applied to in situ observation of seabed deformation,among which the micro-electromechanical accelerometer-array(hereinafter referred to as accelerometers array)is a very advantageous measurement method,with both commercial products and successful application cases.However,the coupling effect between accelerometer-array and sur-rounding soil and the linkage effect of accelerometer-array itself during the deformation may influence the accuracy and reliability of the measurement data.A simulation test chamber was designed and processed,and four groups of simulation tests were carried out to explore the coupling effect and linkage effect of accelerometer-array in the soil with different degree of consolidation.The results show that the accelerometer-array and the soil coupled well,and the coupling effect is positively correlated with the degree of soil consoli-dation.The ratio of accumulative deviation to soil lateral deformation is high at the initial stage of deformation(0-50 mm)and reduced with the continuous increase of deformation(>100 mm).In the process of liquefied soil deformation,the linkage effect of accelerometer array can be ignored,and is negatively correlated with the degree of soil consolidation.A concept to improve the measurement accu-racy of accelerometer-array in different seafloor failure deformation modes is proposed.The research results provide references for the modification of accelerometer-array and the improvement for other flexible rod-shaped deformation sensors.
基金the state 973 project (G1998040703) and key research project of the State Science & Technology Ministry (96-913-07-03),China.
文摘Calculation of repeated observation data at the densified GPS monitoring network in northeastern area of Pamir together with data from IGS stations in the periphery of the area yielded the movement rate of more than 40 GPS station sites in the area, and, hence, the recent crustal deformation rate pattern and time series of fiducial GPS stations in the area were obtained. The result indicates that the principal movement direction of the GPS station sites is NNW, basically diagonal to the strike of Tianshan fold belt, i.e. a normal compression occurs in the Tianshan region. The movement pattern near Jiashi and its southwestern zone is some different from that of station sites in their surrounding areas, indicating a certain relation of tectonic deformation in Jiashi area to seismic activity during last years. The movement rate of station sites in the periphery of Tarim basin less varies and its direction is basically consistent. It indicates less or basically no deformation within Tarim basin.
文摘On the basis of Discontinuous Deformation Analysis (DDA), and considering the moderate intrusion of specific block boundaries to different extents, the first-order block motion model is established for the northeastern margin of Qinghai-Xizang(Tibet) block and the kinematical model for depicting deformation of small regions as well by using GPS observations of three periods (1991, 1999 and 2001). By simulating, we obtained the motion features of the first-order blocks between the large WWN faults on the sides of the studied region, the distribution features of the principal strain rate field and the inhomogeneous motion features with space-time of the faults in the northern boundary of the Qinghai-Xizang (Tibet) block.