Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed...Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.展开更多
In this paper, the control performance is investigated of Circular Tuned Liquid Column Dampers (CTLCD) over torsional response of offshore platform structures excited by ground motions. Based on the equation of motion...In this paper, the control performance is investigated of Circular Tuned Liquid Column Dampers (CTLCD) over torsional response of offshore platform structures excited by ground motions. Based on the equation of motion for the CTLCD-structure system, the optimal control parameters of CTLCD are given through some derivations on the supposition that the ground motion is a stochastic process. The influence of systematic parameters on the equivalent damping ratio of the structures is analyzed with purely torsional vibration and translational-torsional coupled vibration, respectively. The results show that the Circular Tuned Liquid Column Damper (CTLCD) is an effective torsional response control device.展开更多
Most reinforced concrete(RC)frame structures did not achieve the "strong column-weak beam" failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To ...Most reinforced concrete(RC)frame structures did not achieve the "strong column-weak beam" failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To deal with this serious problem, a new column-beam relative factor was proposed to characterize the relative yield situation of column ends and beam ends. By limiting the column-beam relative factor, RC frame structures could achieve the "strong column-weak beam" failure mode under the excitation of strong ground motions. The limit values of column-beam relative factor were calculated, analyzed and verified by using structural simulation models for corner columns in the bottom story of structures, which are destroyed most seriously in earthquakes. The results show that the limit values should be analyzed under bi-directional ground motion and with different axial compression ratios of columns. The peak ground acceleration(PGA)of ground motions has no significant effect on the limit values, while the type of strong ground motions has a significant effect on the limit values.展开更多
The purpose of this paper is to discuss the suitability of out-of-codes tall slab-column and shearwall structure and to popularize the structure in seismic region.In the research,flat-plate floor was used in slab-colu...The purpose of this paper is to discuss the suitability of out-of-codes tall slab-column and shearwall structure and to popularize the structure in seismic region.In the research,flat-plate floor was used in slab-column and shearwall structure in the practical engineering,the key parameters of slab-column and shearwall structure and frame-shearwall structure such as deflection,punching shear behavior,story drift and capability curve were worked out by static plastic analysis,elastic-plastic time history analysis and pushover analysis,then the suitability of out-of-codes tall slab-column and shearwall structure was evaluated.The results show that the out-of-codes tall slab-column and shearwall structure studies could satisfy the require of deflection and punching shear behavior,the story drift under 7 degree expected rare earthquake waves could satisfy the limit value in the codes and the seismic design spectrum was crossed by the capability curve of the structure and the structure could not collapse.The conclusion is that slab-column and shearwall structure with reasonable design built in Ⅱ soil site of intensity 7 seismic fortification zone can be designed higher than the limit height in the codes.展开更多
Packed columns are widely used in the chemical industry such as absorption,stripping,distillation,and extraction in the production of e.g.organic chemicals,and pharmaceuticals.Pressure loss and pressure drop correlati...Packed columns are widely used in the chemical industry such as absorption,stripping,distillation,and extraction in the production of e.g.organic chemicals,and pharmaceuticals.Pressure loss and pressure drop correlations are of special interest when it comes to the hydrodynamic properties of a column.The pressure loss across the column is of interest in the design phase when the size of the blower to drive the gas stream through the column has to be decided.The loading point and flooding point are also influenced by the pressure loss and the area of operation is determined from these points.This work examines four different correlations on pressure drop.The correlations are(i)Ergun’s equation(1952),(ii)an improved version of Ergun’s equation by Stichlmair,Bravo,and Fair(1989),(iii)an equation developed by Billet and Schultes(1999),and(iv)an equation by Rocha,Bravo,and Fair(1993).The complexity of the correlations is increasing in the mentioned order,Ergun’s equation being the simplest one.This study investigates if the more complicated correlations give better predictions to pressure drop in packed columns.This is determined by comparing the correlations to experimental data for pressure drop in a packed column with 8.2 m of structured packing using water as the liquid and atmospheric air as the gas.Seven experiments were carried out for determining the pressure drop in the column with liquid flows varying from 0 to 500 kg·h^(-1).At constant liquid flow,the gas flow was varied from approximately 10 to 70 kg·h^(-1).The pressure drop across the non-wetted column was best described by the correlation by Rocha et al.while the pressure drop for liquid flows from 100 to 500 kg·h^(-1)was,in general,best described by Stichlmair’s equation.For an irrigated column,the highest deviation was a predicted pressure drop 69.6%lower than measured.The best prediction was 0.1%higher than the measured.This study shows,surprisingly,that for a system of water and atmospheric air,complicated correlations on pressure drop determination do not provide better estimates than simple equations.展开更多
The steel beam-concrete column(RCS)frame structure is composed of the reinforced concrete columns and the steel beams,which is a composite structure with the superior performances.This kind of the frame structure has ...The steel beam-concrete column(RCS)frame structure is composed of the reinforced concrete columns and the steel beams,which is a composite structure with the superior performances.This kind of the frame structure has been rapidly developed and widely used in the field of the civil engineering because of its high building applicability,the fast construction speed,the low cost of the foundation and the good mechanical properties.Various kinds of the large-span,heavy-load and high-rise buildings emerge in endlessly,and the requirement for the structural performance is becoming higher and higher.The reinforced concrete column-steel beam composite frame structure is a high-performance structural system with the broad development prospects in China because of its good mechanical performance,durability,fire resistance and the building use space.展开更多
Enhanced boiling experiments of two different enhanced structures were carried out in a thermosyphon loop evaporator chamber. One was micro-columns array structure (MCAS), which was fabricated on copper plate surface ...Enhanced boiling experiments of two different enhanced structures were carried out in a thermosyphon loop evaporator chamber. One was micro-columns array structure (MCAS), which was fabricated on copper plate surface with interaction high speed wire electrode discharge machining (HS-WEDM). The other was the ramification of MCAS, named micro-column-array and sintered-copper compound structure (MSCS), which was fabricated with sintered method on micro-column array structure. Considering the wall superheat and critical heat flux (CHF), comparisons were made between them. The results show that both MCAS and MSCS can enhance the boiling heat transfer. It is also found that the enhanced boiling heat transfer ability of MSCS is changed obviously while the porosity of the sintered copper layer is changed.展开更多
In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic ana...In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained.展开更多
Based on the assumption of finite deformation, the Hamilton variational principle is extended to a nonlinear elastic Euler-type beam-column structure located on a nonlinear elastic foundation. The corresponding three-...Based on the assumption of finite deformation, the Hamilton variational principle is extended to a nonlinear elastic Euler-type beam-column structure located on a nonlinear elastic foundation. The corresponding three-dimensional (3D) mathematical model for analyzing the nonlinear mechanical behaviors of structures is established, in which the effects of the rotation inertia and the nonlinearity of material and geometry are considered. As an application, the nonlinear stability and the post-buckling for a linear elastic beam with the equal cross-section located on an elastic foundation are analyzed. One end of the beam is fully fixed, and the other end is partially fixed and subjected to an axial force. A new numerical technique is proposed to calculate the trivial solution, bifurcation points, and bifurcation solutions by the shooting method and the Newton- Raphson iterative method. The first and second bifurcation points and the corresponding bifurcation solutions are calculated successfully. The effects of the foundation resistances and the inertia moments on the bifurcation points are considered.展开更多
[Objective] The large-scale single-column fattening pig house with fermen- tation bed could hold 1 500 heads of fattening pigs. Since the number of pigs in piggery is too large, the management is difficult. The behavi...[Objective] The large-scale single-column fattening pig house with fermen- tation bed could hold 1 500 heads of fattening pigs. Since the number of pigs in piggery is too large, the management is difficult. The behavior of feeding, drinking, movement, sleeping, fighting of pigs is difficult to handle. The pigs cannot be man- aged well, resulting in the enhanced weakness of piglets, enhanced illness of weak pigs and missing treatment of ill pigs. The management for the pig populations is not satisfactory, and thus, it is needed to improve timely. [Method] The barriers for the fattening pigs in the large-scale pig house with fermentation bed were designed. The single management for single fattening pig was proposed. The large-scale fat- tening pig house was divided into 8 regions. Among them, 4 regions were located in both sides of the fermentation bed. Their main function was to separate ill, weak, small and bad pigs. In addition, the main column was divided into 4 gradual barri- ers. They were used to separate different-size fattening pigs. In view of manage- ment, the different-type pigs were managed dividedly with the gradual barriers. The equally-sized pigs were concentrated into one column. The ill, weak, small and bad pigs were isolated into barriers. Thus, the dynamic management was adopted. Until the fattening pigs grew up to 75 kg and their health was stable, the barriers among the columns were canceled to mix the pigs again and guarantee the pigs more gymnastic space. [Result] This design would improve the disease resistance of ill pigs, health status of weak pigs and management level of pig populations. This study would also provide a basis for the healthy running of large-scale fattening pig house with fermentation bed. [Conclusion] The pig-raising model with fermentation bed would improve the environment of pig house and the welfare of pigs. In addi- tion, the performance of pigs and quality of pork were also improved. The fermen- tation bed had an obvious advantage in safety and economics, and it had a broad application prospect.展开更多
The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing ...The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing the control effectiveness in mega-frame buildings. In this paper, a dynamic equation and method to assemble parameter matrixes for a mega-sub controlled structure under random wind loads is presented. Semi-active control using magnetorheological dampers for the MSCS under random wind loads is investigated, and is compared with a corresponding system without dampers. A parametric study of the relative stiffness ratio and relative mass ratio between the mega-frame and the substructures, as well as the additional column stiffness ratio that influences the response control effectiveness of the MSCS, is discussed. The studies reveal, for the first time, that different control mechanisms exist. The results indicate that the proposed structure employing semi-active control can offer an effective control mechanism. Guidelines for selecting parameters are provided based on the analytical study.展开更多
This paper presents the results of an experimental study carried out using large scale equipment to observe the effect of geometry on gas distribution properties of a high capacity corrugated sheet structured packing ...This paper presents the results of an experimental study carried out using large scale equipment to observe the effect of geometry on gas distribution properties of a high capacity corrugated sheet structured packing (Montz-pak B 1-250M) and to compare it with that of its conventional counterpart (Montz-pak B1-250). Although the high capacity packing exhibits a significantly lower overall pressure drop, the gas distribution performance is similar to that of the conventional packing, and in both cases consistently good one.展开更多
Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws...Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws of material under simulation;both models have been compared with test results and show a dependence of Poisson ratio on curvature of σ-ε law. 2. A truss finite element has been used in the nonlinear static and dynamic analysis of plane RC frames;it has been compared with test results and describes, in a simple way, the formation of plastic hinges. 3. Thanks to the very simple geometry of a truss, the equilibrium equations can be easily written and the stiffness matrix can be easily updated, both with respect to the deformed truss, within each step of a static incremental loading or within each time step of a dynamic analysis, so that to take into account geometric nonlinearities. So the confinement of a RC column is interpreted as a structural stability effect of concrete. And a significant role of the transverse reinforcement is revealed, that of preventing, by its close spacing and sufficient amount, the buckling of inner longitudinal concrete struts, which would lead to a global instability of the RC column. 4. The proposed truss model is statically indeterminate, so it exhibits some features, which are not met by the “strut-and-tie” model.展开更多
The liquefaction analysis procedure conducted at a dam foundation associated with a layer of liquefiablesand is presented. In this case, the effects of the overlying dam and an embedded diaphragm wall onliquefaction p...The liquefaction analysis procedure conducted at a dam foundation associated with a layer of liquefiablesand is presented. In this case, the effects of the overlying dam and an embedded diaphragm wall onliquefaction potential of foundation soils are considered. The analysis follows the stress-based approachwhich compares the earthquake-induced cyclic stresses with the cyclic resistance of the soil, and thecyclic resistance of the sand under complex stress condition is the key issue. Comprehensive laboratorymonotonic and cyclic triaxial tests are conducted to evaluate the static characteristics, dynamic characteristicsand the cyclic resistance against liquefaction of the foundation soils. The distribution of thefactor of safety considering liquefaction is given. It is found that the zones beneath the dam edges andnear the upstream of the diaphragm wall are more susceptible to liquefaction than in free field, whereasthe zone beneath the center of the dam is less susceptible to liquefaction than in free field. According tothe results, the strategies of ground improvement are proposed to mitigate the liquefaction hazards. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The spatial reticulated shell structure with cables (RSC) is a kind of coupling working system, which consists of flexible cables, reticulated shell structure (RS) and tower columns. The dynamic analysis of RSC based ...The spatial reticulated shell structure with cables (RSC) is a kind of coupling working system, which consists of flexible cables, reticulated shell structure (RS) and tower columns. The dynamic analysis of RSC based on the coupling model was carried out. Three kinds of elements such as the spatial bar element, cable element and beam element were introduced to analyze the reticulated shell, cable and tower column respectively. Furthermore, such parameter influences as structural boundary conditions, grid configuration, the span-to-depth ratio and the arrangement of cable system upon structural dynamics were analyzed. The structural vibration modes can be divided into four groups based on some numerical examples. And the frequencies in the same group are very close while the frequencies in different groups are different from each other obviously. It is clear that the sequence of the appearance of the each mode group heavily depends on the comparative stiffness of the tower column system, RS and cables.展开更多
The focus of this article is to accomplish a program using MatLab software, which will determine the global behavior of the structure, the stress, stability and frequency of the tall building with "n" levels. The pr...The focus of this article is to accomplish a program using MatLab software, which will determine the global behavior of the structure, the stress, stability and frequency of the tall building with "n" levels. The program starts with the global analyses based on the equivalent column theory. The central core consists of reinforced concrete shear walls of the elevator's tubes and of the staircase, design to resist the lateral loads. Applying the equivalent column' s theory, the bracing system will be replaced by an equivalent column, considered to be a vertical cantilever fixed at the base and the loads will be applied in the shear center axis. The program using mathematical and physical relations, has as input dates the geometrical and stiffness characteristics of the plan of the building and as output dates the critical load, the fundamental frequency, the maximum stresses and deformations of the structure.展开更多
The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving ...The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.展开更多
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51276157)
文摘Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.
文摘In this paper, the control performance is investigated of Circular Tuned Liquid Column Dampers (CTLCD) over torsional response of offshore platform structures excited by ground motions. Based on the equation of motion for the CTLCD-structure system, the optimal control parameters of CTLCD are given through some derivations on the supposition that the ground motion is a stochastic process. The influence of systematic parameters on the equivalent damping ratio of the structures is analyzed with purely torsional vibration and translational-torsional coupled vibration, respectively. The results show that the Circular Tuned Liquid Column Damper (CTLCD) is an effective torsional response control device.
基金Supported by the National Natural Science Foundation of China(No.51525803)the Scientific and Technological Development Plans of Tianjin Construction System(No.2013-35)+1 种基金International Science&Technology Cooperation Program of China(No.2012DFA70810)the Basic Science Research Foundation of IEM,CEA(No.2013B07)
文摘Most reinforced concrete(RC)frame structures did not achieve the "strong column-weak beam" failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To deal with this serious problem, a new column-beam relative factor was proposed to characterize the relative yield situation of column ends and beam ends. By limiting the column-beam relative factor, RC frame structures could achieve the "strong column-weak beam" failure mode under the excitation of strong ground motions. The limit values of column-beam relative factor were calculated, analyzed and verified by using structural simulation models for corner columns in the bottom story of structures, which are destroyed most seriously in earthquakes. The results show that the limit values should be analyzed under bi-directional ground motion and with different axial compression ratios of columns. The peak ground acceleration(PGA)of ground motions has no significant effect on the limit values, while the type of strong ground motions has a significant effect on the limit values.
文摘The purpose of this paper is to discuss the suitability of out-of-codes tall slab-column and shearwall structure and to popularize the structure in seismic region.In the research,flat-plate floor was used in slab-column and shearwall structure in the practical engineering,the key parameters of slab-column and shearwall structure and frame-shearwall structure such as deflection,punching shear behavior,story drift and capability curve were worked out by static plastic analysis,elastic-plastic time history analysis and pushover analysis,then the suitability of out-of-codes tall slab-column and shearwall structure was evaluated.The results show that the out-of-codes tall slab-column and shearwall structure studies could satisfy the require of deflection and punching shear behavior,the story drift under 7 degree expected rare earthquake waves could satisfy the limit value in the codes and the seismic design spectrum was crossed by the capability curve of the structure and the structure could not collapse.The conclusion is that slab-column and shearwall structure with reasonable design built in Ⅱ soil site of intensity 7 seismic fortification zone can be designed higher than the limit height in the codes.
基金the BioCO_(2) project(the Danish government through the EUDP agency No.64016-0082)the INTERACT project(European Union Seventh Framework Programme FP7/2007-2013 under grant agreement No.608535)the financial support from the Center for Energy Resources Engineering(CERE),and the Technical University of Denmark.
文摘Packed columns are widely used in the chemical industry such as absorption,stripping,distillation,and extraction in the production of e.g.organic chemicals,and pharmaceuticals.Pressure loss and pressure drop correlations are of special interest when it comes to the hydrodynamic properties of a column.The pressure loss across the column is of interest in the design phase when the size of the blower to drive the gas stream through the column has to be decided.The loading point and flooding point are also influenced by the pressure loss and the area of operation is determined from these points.This work examines four different correlations on pressure drop.The correlations are(i)Ergun’s equation(1952),(ii)an improved version of Ergun’s equation by Stichlmair,Bravo,and Fair(1989),(iii)an equation developed by Billet and Schultes(1999),and(iv)an equation by Rocha,Bravo,and Fair(1993).The complexity of the correlations is increasing in the mentioned order,Ergun’s equation being the simplest one.This study investigates if the more complicated correlations give better predictions to pressure drop in packed columns.This is determined by comparing the correlations to experimental data for pressure drop in a packed column with 8.2 m of structured packing using water as the liquid and atmospheric air as the gas.Seven experiments were carried out for determining the pressure drop in the column with liquid flows varying from 0 to 500 kg·h^(-1).At constant liquid flow,the gas flow was varied from approximately 10 to 70 kg·h^(-1).The pressure drop across the non-wetted column was best described by the correlation by Rocha et al.while the pressure drop for liquid flows from 100 to 500 kg·h^(-1)was,in general,best described by Stichlmair’s equation.For an irrigated column,the highest deviation was a predicted pressure drop 69.6%lower than measured.The best prediction was 0.1%higher than the measured.This study shows,surprisingly,that for a system of water and atmospheric air,complicated correlations on pressure drop determination do not provide better estimates than simple equations.
文摘The steel beam-concrete column(RCS)frame structure is composed of the reinforced concrete columns and the steel beams,which is a composite structure with the superior performances.This kind of the frame structure has been rapidly developed and widely used in the field of the civil engineering because of its high building applicability,the fast construction speed,the low cost of the foundation and the good mechanical properties.Various kinds of the large-span,heavy-load and high-rise buildings emerge in endlessly,and the requirement for the structural performance is becoming higher and higher.The reinforced concrete column-steel beam composite frame structure is a high-performance structural system with the broad development prospects in China because of its good mechanical performance,durability,fire resistance and the building use space.
基金Projects(50605023 50436010) supported by the National Natural Science Foundation of China
文摘Enhanced boiling experiments of two different enhanced structures were carried out in a thermosyphon loop evaporator chamber. One was micro-columns array structure (MCAS), which was fabricated on copper plate surface with interaction high speed wire electrode discharge machining (HS-WEDM). The other was the ramification of MCAS, named micro-column-array and sintered-copper compound structure (MSCS), which was fabricated with sintered method on micro-column array structure. Considering the wall superheat and critical heat flux (CHF), comparisons were made between them. The results show that both MCAS and MSCS can enhance the boiling heat transfer. It is also found that the enhanced boiling heat transfer ability of MSCS is changed obviously while the porosity of the sintered copper layer is changed.
文摘In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained.
基金Project supported by the National Science Foundation for Distinguished Young Scholars of China(No. 11002084)the Shanghai Pujiang Program (No. 07pj14073)the Scientific Research Projectof Shanghai Normal University (No. SK201032)
文摘Based on the assumption of finite deformation, the Hamilton variational principle is extended to a nonlinear elastic Euler-type beam-column structure located on a nonlinear elastic foundation. The corresponding three-dimensional (3D) mathematical model for analyzing the nonlinear mechanical behaviors of structures is established, in which the effects of the rotation inertia and the nonlinearity of material and geometry are considered. As an application, the nonlinear stability and the post-buckling for a linear elastic beam with the equal cross-section located on an elastic foundation are analyzed. One end of the beam is fully fixed, and the other end is partially fixed and subjected to an axial force. A new numerical technique is proposed to calculate the trivial solution, bifurcation points, and bifurcation solutions by the shooting method and the Newton- Raphson iterative method. The first and second bifurcation points and the corresponding bifurcation solutions are calculated successfully. The effects of the foundation resistances and the inertia moments on the bifurcation points are considered.
基金Supported by International Science and Technology Cooperation Project of China(2012DFA31120)Special Fund for Agro-scientific Research in the Public Interest(201303094)National Key Technology Research and Development Program(2012BAD14B15)~~
文摘[Objective] The large-scale single-column fattening pig house with fermen- tation bed could hold 1 500 heads of fattening pigs. Since the number of pigs in piggery is too large, the management is difficult. The behavior of feeding, drinking, movement, sleeping, fighting of pigs is difficult to handle. The pigs cannot be man- aged well, resulting in the enhanced weakness of piglets, enhanced illness of weak pigs and missing treatment of ill pigs. The management for the pig populations is not satisfactory, and thus, it is needed to improve timely. [Method] The barriers for the fattening pigs in the large-scale pig house with fermentation bed were designed. The single management for single fattening pig was proposed. The large-scale fat- tening pig house was divided into 8 regions. Among them, 4 regions were located in both sides of the fermentation bed. Their main function was to separate ill, weak, small and bad pigs. In addition, the main column was divided into 4 gradual barri- ers. They were used to separate different-size fattening pigs. In view of manage- ment, the different-type pigs were managed dividedly with the gradual barriers. The equally-sized pigs were concentrated into one column. The ill, weak, small and bad pigs were isolated into barriers. Thus, the dynamic management was adopted. Until the fattening pigs grew up to 75 kg and their health was stable, the barriers among the columns were canceled to mix the pigs again and guarantee the pigs more gymnastic space. [Result] This design would improve the disease resistance of ill pigs, health status of weak pigs and management level of pig populations. This study would also provide a basis for the healthy running of large-scale fattening pig house with fermentation bed. [Conclusion] The pig-raising model with fermentation bed would improve the environment of pig house and the welfare of pigs. In addi- tion, the performance of pigs and quality of pork were also improved. The fermen- tation bed had an obvious advantage in safety and economics, and it had a broad application prospect.
基金Science and Technology Fund of NWPU Under Grant No. M450211Seed Fund of NWPU Under Grant No. Z200534
文摘The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing the control effectiveness in mega-frame buildings. In this paper, a dynamic equation and method to assemble parameter matrixes for a mega-sub controlled structure under random wind loads is presented. Semi-active control using magnetorheological dampers for the MSCS under random wind loads is investigated, and is compared with a corresponding system without dampers. A parametric study of the relative stiffness ratio and relative mass ratio between the mega-frame and the substructures, as well as the additional column stiffness ratio that influences the response control effectiveness of the MSCS, is discussed. The studies reveal, for the first time, that different control mechanisms exist. The results indicate that the proposed structure employing semi-active control can offer an effective control mechanism. Guidelines for selecting parameters are provided based on the analytical study.
文摘This paper presents the results of an experimental study carried out using large scale equipment to observe the effect of geometry on gas distribution properties of a high capacity corrugated sheet structured packing (Montz-pak B 1-250M) and to compare it with that of its conventional counterpart (Montz-pak B1-250). Although the high capacity packing exhibits a significantly lower overall pressure drop, the gas distribution performance is similar to that of the conventional packing, and in both cases consistently good one.
文摘Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws of material under simulation;both models have been compared with test results and show a dependence of Poisson ratio on curvature of σ-ε law. 2. A truss finite element has been used in the nonlinear static and dynamic analysis of plane RC frames;it has been compared with test results and describes, in a simple way, the formation of plastic hinges. 3. Thanks to the very simple geometry of a truss, the equilibrium equations can be easily written and the stiffness matrix can be easily updated, both with respect to the deformed truss, within each step of a static incremental loading or within each time step of a dynamic analysis, so that to take into account geometric nonlinearities. So the confinement of a RC column is interpreted as a structural stability effect of concrete. And a significant role of the transverse reinforcement is revealed, that of preventing, by its close spacing and sufficient amount, the buckling of inner longitudinal concrete struts, which would lead to a global instability of the RC column. 4. The proposed truss model is statically indeterminate, so it exhibits some features, which are not met by the “strut-and-tie” model.
基金the support from the National Natural Science Foundation of China (No. 51209179)
文摘The liquefaction analysis procedure conducted at a dam foundation associated with a layer of liquefiablesand is presented. In this case, the effects of the overlying dam and an embedded diaphragm wall onliquefaction potential of foundation soils are considered. The analysis follows the stress-based approachwhich compares the earthquake-induced cyclic stresses with the cyclic resistance of the soil, and thecyclic resistance of the sand under complex stress condition is the key issue. Comprehensive laboratorymonotonic and cyclic triaxial tests are conducted to evaluate the static characteristics, dynamic characteristicsand the cyclic resistance against liquefaction of the foundation soils. The distribution of thefactor of safety considering liquefaction is given. It is found that the zones beneath the dam edges andnear the upstream of the diaphragm wall are more susceptible to liquefaction than in free field, whereasthe zone beneath the center of the dam is less susceptible to liquefaction than in free field. According tothe results, the strategies of ground improvement are proposed to mitigate the liquefaction hazards. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金NationalNaturalScience Foundation ofChina (No. 5 0 2 780 5 4) and the KeyProject of Chinese Ministry of Education(No.10 40 79)
文摘The spatial reticulated shell structure with cables (RSC) is a kind of coupling working system, which consists of flexible cables, reticulated shell structure (RS) and tower columns. The dynamic analysis of RSC based on the coupling model was carried out. Three kinds of elements such as the spatial bar element, cable element and beam element were introduced to analyze the reticulated shell, cable and tower column respectively. Furthermore, such parameter influences as structural boundary conditions, grid configuration, the span-to-depth ratio and the arrangement of cable system upon structural dynamics were analyzed. The structural vibration modes can be divided into four groups based on some numerical examples. And the frequencies in the same group are very close while the frequencies in different groups are different from each other obviously. It is clear that the sequence of the appearance of the each mode group heavily depends on the comparative stiffness of the tower column system, RS and cables.
文摘The focus of this article is to accomplish a program using MatLab software, which will determine the global behavior of the structure, the stress, stability and frequency of the tall building with "n" levels. The program starts with the global analyses based on the equivalent column theory. The central core consists of reinforced concrete shear walls of the elevator's tubes and of the staircase, design to resist the lateral loads. Applying the equivalent column' s theory, the bracing system will be replaced by an equivalent column, considered to be a vertical cantilever fixed at the base and the loads will be applied in the shear center axis. The program using mathematical and physical relations, has as input dates the geometrical and stiffness characteristics of the plan of the building and as output dates the critical load, the fundamental frequency, the maximum stresses and deformations of the structure.
文摘The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.