期刊文献+
共找到735篇文章
< 1 2 37 >
每页显示 20 50 100
Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis 被引量:4
1
作者 Shanwei Xiong Li Zhou +1 位作者 Yiyang Dai Xu Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期1-14,共14页
A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively ... A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively used and still have considerable potential. In recent years, methods based on deep neural networks have made significant breakthroughs, and fault diagnosis methods for industrial processes based on deep learning have attracted considerable research attention. Therefore, we propose a fusion deeplearning algorithm based on a fully convolutional neural network(FCN) to extract features and build models to correctly diagnose all types of faults. We use long short-term memory(LSTM) units to expand our proposed FCN so that our proposed deep learning model can better extract the time-domain features of chemical process data. We also introduce the attention mechanism into the model, aimed at highlighting the importance of features, which is significant for the fault diagnosis of chemical processes with many features. When applied to the benchmark Tennessee Eastman process, our proposed model exhibits impressive performance, demonstrating the effectiveness of the attention-based LSTM FCN in chemical process fault diagnosis. 展开更多
关键词 Safety Fault diagnosis Process systems Long short-term memory attention mechanism Neural networks
下载PDF
基于CNN-LSTM-Attention的月生活需水预测研究
2
作者 陈星 沈紫菡 +1 位作者 许钦 蔡晶 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第5期1-6,共6页
需水预测是进行水资源配置的重要部分,对于水资源合理开发利用和社会可持续发展有重要指导意义.本文以陕西省为研究区,结合大数据分析法,提出一种基于CNN-LSTM-Attention的月生活需水预测模型.首先,通过卷积神经网络(convolutional neur... 需水预测是进行水资源配置的重要部分,对于水资源合理开发利用和社会可持续发展有重要指导意义.本文以陕西省为研究区,结合大数据分析法,提出一种基于CNN-LSTM-Attention的月生活需水预测模型.首先,通过卷积神经网络(convolutional neural networks,CNN)提取数据动态变化特征,然后利用长短期记忆(long short-term memory,LSTM)网络对提取的特征进行学习训练,最后使用注意力(attention)机制分配LSTM隐含层不同权重,预测月生活需水量并对比实际数据.结果表明,CNN-LSTM-Attention模型的相对平均误差值和决定系数(R2)分别为2.54%、0.95,满足预测精度需求,相比于LSTM模型预测精度更高.进一步证明了模型预测的合理性,可为陕西省水资源规划提供指导. 展开更多
关键词 月尺度 需水预测 卷积神经网络 长短期记忆网络 注意力机制 因子筛选
下载PDF
基于BiLSTM-Attention的F_(10.7)指数预测模型与中国自主数据集的应用
3
作者 闫帅楠 李雪宝 +7 位作者 董亮 黄文耿 王晶 闫鹏朝 娄恒瑞 黄徐胜 李哲 郑艳芳 《空间科学学报》 CAS CSCD 北大核心 2024年第2期251-261,共11页
F_(10.7)指数是太阳活动的重要指标,准确预测F_(10.7)指数有助于预防和缓解太阳活动对无线电通信、导航和卫星通信等领域的影响.基于F_(10.7)射电流量的特性,在双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM... F_(10.7)指数是太阳活动的重要指标,准确预测F_(10.7)指数有助于预防和缓解太阳活动对无线电通信、导航和卫星通信等领域的影响.基于F_(10.7)射电流量的特性,在双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)基础上融入注意力机制(Attention),提出了一种基于BiLSTM-Attention的F_(10.7)预报模型.在加拿大DRAO数据集上其平均绝对误差(MAE)为5.38,平均绝对百分比误差(MAPE)控制在5%以内,相关系数(R)高达0.987,与其他RNN模型相比拥有优越的预测性能.针对中国廊坊L&S望远镜观测的F_(10.7)数据集,提出了一种转换平均校准(Conversion Average Calibration,CAC)方法进行数据预处理,处理后的数据与DRAO数据集具有较高的相关性.基于该数据集对比分析了RNN系列模型的预报效果,实验结果表明,BiLSTM-Attention和BiLSTM两种模型在预测F_(10.7)指数方面具有较好的优势,表现出较好的预测性能和稳定性. 展开更多
关键词 F_(10.7)预报 双向长短时记忆网络 注意力机制 L&S数据集
下载PDF
基于CNN-LSTM-Attention网络的河南省冬小麦产量预测
4
作者 姜宇 马廷淮 《麦类作物学报》 CAS CSCD 北大核心 2024年第10期1352-1359,共8页
为探讨利用时空建模的深度学习方法提高大区域冬小麦产量预测精度的可行性,从县级冬小麦产量预测角度出发,使用卷积神经网络(convolutional neural networks,CNN)从气候和土壤数据中提取与作物产量密切相关的特征数据,利用注意力机制(at... 为探讨利用时空建模的深度学习方法提高大区域冬小麦产量预测精度的可行性,从县级冬小麦产量预测角度出发,使用卷积神经网络(convolutional neural networks,CNN)从气候和土壤数据中提取与作物产量密切相关的特征数据,利用注意力机制(attention mechanism)捕捉特征数据之间的相互依赖性,最后将重新加权的特征与长短期记忆网络(long short-term memory network,LSTM)从年产量中捕获到的时间依赖性结合来预测县级冬小麦产量。结果表明,注意力机制模块能够有效地考虑到从CNN中提取的特征之间的相对重要性;模型RMSE为686.82 kg·hm^(-2),相较于支持向量机(SVR)、深度全连接(DFNN)和随机森林(RF)模型分别降低了43%、30%和67%,且R^(2)在0.755以上,MAPE低于14.11%,预测精度均优于传统方法。这说明将注意力机制、CNN和LSTM结合建立的预测模型具有良好的泛化能力和空间平稳性,可用于大区域冬小麦产量预测。 展开更多
关键词 冬小麦 注意力机制 卷积神经网络 长短期记忆网络 产量预测
下载PDF
基于CNN-Attention-LSTM的大坝变形预测模型
5
作者 施彦彤 郑东健 +1 位作者 赵汉 周新新 《水利水电技术(中英文)》 北大核心 2024年第9期121-132,共12页
【目的】预测大坝变形以规避风险是大坝变形监测的重点,一个可靠的预测模型可以洞察大坝未来变形趋势。为了更好地预测大坝的变形,提高预测精度和计算效率,【方法】提出了一种基于卷积神经网络(CNN)、注意力机制(Attention)和长短时记... 【目的】预测大坝变形以规避风险是大坝变形监测的重点,一个可靠的预测模型可以洞察大坝未来变形趋势。为了更好地预测大坝的变形,提高预测精度和计算效率,【方法】提出了一种基于卷积神经网络(CNN)、注意力机制(Attention)和长短时记忆网络(LSTM)的大坝监测模型。CNN从监测数据中提取特征,LSTM更好地从时间序列数据中学习,并在此CNN-LSTM模型的基础上,耦合深度学习算法Attention机制,突出特征对输入效果的影响,在不影响模型精度的前提下提高计算速度,进一步提高模型预测精度与稳定性。同时,结合工程实例进行了应用分析。【结果】结果显示,所建模型能够精确预测大坝变形,在各点位测试集上平均R2、MAE、RMSE、MSE和MAPE分别为0.989 mm、0.337 mm、0.469 mm、0.252 mm和13.918%。【结论】结果表明:所建模型具有较好的变形预测能力和适用性,相较于CNN、LSTM、CNN-LSTM、Attention-LSTM模型,该模型具有较好的MAE、RMSE、MSE、MAPE和R2等指标,并提高了计算效率,更适合大坝变形的预测。 展开更多
关键词 变形预测 卷积神经网络 长短时记忆网络 注意力机制 影响因素
下载PDF
基于CB-Attention的JavaScript恶意混淆代码检测方法
6
作者 徐鑫 张志宁 +2 位作者 吕云山 李立 郑玉杰 《计算机工程与设计》 北大核心 2024年第8期2298-2305,共8页
当今JavaScript代码混淆方法日益多样,现有检测方法在对混淆代检测时会出现漏报和误报的情况,为解决该问题,提出一种基于CB-Attention的JavaScript恶意代码检测方法。由SDPCNN模型和BiLSTM+Attention模型构成,SDPCNN对短距离间的语义特... 当今JavaScript代码混淆方法日益多样,现有检测方法在对混淆代检测时会出现漏报和误报的情况,为解决该问题,提出一种基于CB-Attention的JavaScript恶意代码检测方法。由SDPCNN模型和BiLSTM+Attention模型构成,SDPCNN对短距离间的语义特征信息进行提取,BiLSTM+Attention获取JavaScript代码中长距离间的语义信息特征。为验证所提方法的有效性,将该方法与其它方法进行对比,对比结果表明,该方法具有较好的检测效果,F1-Score可达98.78%。 展开更多
关键词 JavaScript恶意代码 混淆代码 检测模型 增强深度金字塔卷积神经网络 注意力网络 双向长短时记忆网络 长距离特征信息 抽象语法树
下载PDF
基于Attention机制和递归思想的LSTM车辆轨迹预测
7
作者 张恒 陈焕明 +1 位作者 党步伟 王继贤 《青岛大学学报(工程技术版)》 CAS 2024年第2期74-82,共9页
针对现有车辆轨迹预测模型在长时预测方面准确性不足的问题,基于Attention机制和递归思想的长短时记忆网络(long short-term memory, LSTM)构建了一种新型的车辆轨迹预测模型,即ATT-LSTM(RE)模型,使用编码器–解码器架构更精确地预测车... 针对现有车辆轨迹预测模型在长时预测方面准确性不足的问题,基于Attention机制和递归思想的长短时记忆网络(long short-term memory, LSTM)构建了一种新型的车辆轨迹预测模型,即ATT-LSTM(RE)模型,使用编码器–解码器架构更精确地预测车辆未来的行驶轨迹。研究结果表明,模型意图识别的准确率为91.7%,F1分数、召回率、精确率均在0.872~0.977之间;1 s、2 s、3 s、4 s、5 s的终点轨迹预测的均方根误差为0.52 m、1.07 m、1.69 m、2.58 m、3.31 m,优于同类型模型。 展开更多
关键词 车辆轨迹预测 意图识别 长短时记忆网络 attention机制 递归思想
下载PDF
基于RIME和1DCNN-LSTM-Attention的无创血糖预测模型研究
8
作者 贺义博 靳鸿 +1 位作者 周春 屈盛玉 《现代电子技术》 北大核心 2024年第18期83-88,共6页
实现无创血糖检测对于糖尿病患者来说具有重要意义,然而目前市面上的无创血糖仪存在检测精度不高的问题。为了提高无创血糖检测的准确度,基于近红外无创血糖检测仪,构建了1DCNN-LSTM-Attention混合预测模型,同时引入了霜冰优化算法(RIME... 实现无创血糖检测对于糖尿病患者来说具有重要意义,然而目前市面上的无创血糖仪存在检测精度不高的问题。为了提高无创血糖检测的准确度,基于近红外无创血糖检测仪,构建了1DCNN-LSTM-Attention混合预测模型,同时引入了霜冰优化算法(RIME)。该模型通过一维卷积神经网络(1DCNN)提取数据中的局部特征,将所提取的特征向量作为长短期记忆(LSTM)网络的输入,捕捉数据中的依赖关系;采用注意力机制(Attention)为LSTM的输出赋予不同的权重,增强关键信息提取;通过RIME算法优化模型参数,避免陷入局部最优解。结果表明,引入RIME的1DCNN-LSTM-Attention混合模型预测效果优于1DCNN、LSTM、1DCNN-LSTM、1DCNN-LSTM-Attention等模型,预测血糖值与有创血糖值的平均绝对误差为0.121 0,均方误差为0.018 6,相关系数达到了0.982 3。该模型有助于提高近红外无创血糖检测的精确度和可靠性。 展开更多
关键词 近红外无创血糖检测 一维卷积神经网络 霜冰优化算法 长短期记忆网络 注意力机制 参数优化
下载PDF
基于CSI与Attention-BiLSTM的动作识别算法
9
作者 沈诚遥 殳国华 郁高亚 《电气自动化》 2024年第5期108-110,共3页
与传统动作识别技术相比,基于信道状态信息的动作识别具有成本低、安全便利等特点,应用前景广阔。利用乐鑫ESP32采集信道子载波幅值信息,结合预处理算法,并基于结合注意力机制的双向长短期记忆网络的动作识别算法,实现对走路、拖地、捡... 与传统动作识别技术相比,基于信道状态信息的动作识别具有成本低、安全便利等特点,应用前景广阔。利用乐鑫ESP32采集信道子载波幅值信息,结合预处理算法,并基于结合注意力机制的双向长短期记忆网络的动作识别算法,实现对走路、拖地、捡起、坐下、蹲下和站起六种动作的特征提取与分类识别。测试结果表明:算法在测试集上的平均识别准确率高达95.8%,相较于常规的长短期记忆算法,识别准确率更高、收敛速度更快;与传统基于统计特征与机器学习的分类算法相比,算法直接利用神经网络自动提取时序特征,特征提取更精确,准确率提升超过10%。试验结果验证了该算法在基于信道状态信息的动作识别上的有效性,说明该算法具有较高的实用价值。 展开更多
关键词 注意力机制 双向长短期记忆网络 动作识别 信道状态信息 分类算法
下载PDF
A Novel Parameter-Optimized Recurrent Attention Network for Pipeline Leakage Detection 被引量:2
10
作者 Tong Sun Chuang Wang +2 位作者 Hongli Dong Yina Zhou Chuang Guan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1064-1076,共13页
Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing... Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing DL methods have difficulty in achieving good performance in identifying leakage types due to the complex time dynamics of pipeline data.On the other hand,the initial parameter selection in the detection model is generally random,which may lead to unstable recognition performance.For this reason,a hybrid DL framework referred to as parameter-optimized recurrent attention network(PRAN)is presented in this paper to improve the accuracy of PLD.First,a parameter-optimized long short-term memory(LSTM)network is introduced to extract effective and robust features,which exploits a particle swarm optimization(PSO)algorithm with cross-entropy fitness function to search for globally optimal parameters.With this framework,the learning representation capability of the model is improved and the convergence rate is accelerated.Moreover,an anomaly-attention mechanism(AM)is proposed to discover class discriminative information by weighting the hidden states,which contributes to amplifying the normalabnormal distinguishable discrepancy,further improving the accuracy of PLD.After that,the proposed PRAN not only implements the adaptive optimization of network parameters,but also enlarges the contribution of normal-abnormal discrepancy,thereby overcoming the drawbacks of instability and poor generalization.Finally,the experimental results demonstrate the effectiveness and superiority of the proposed PRAN for PLD. 展开更多
关键词 attention mechanism(AM) long shortterm memory(LSTM) parameter-optimized recurrent attention network(PRAN) particle swarm optimization(PSO) pipeline leakage detection(PLD)
下载PDF
Continuous Sign Language Recognition Based on Spatial-Temporal Graph Attention Network 被引量:2
11
作者 Qi Guo Shujun Zhang Hui Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1653-1670,共18页
Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtempora... Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset. 展开更多
关键词 Continuous sign language recognition graph attention network bidirectional long short-term memory connectionist temporal classification
下载PDF
Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM
12
作者 Lin Ma Liyong Wang +5 位作者 Shuang Zeng Yutong Zhao Chang Liu Heng Zhang Qiong Wu Hongbo Ren 《Energy Engineering》 EI 2024年第6期1473-1493,共21页
Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s... Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons. 展开更多
关键词 Short-term household load forecasting long short-term memory network attention mechanism hybrid deep learning framework
下载PDF
基于CNN-LSTM-Attention的配电网拓扑实时辨识方法
13
作者 凌佳凯 章逸舟 +4 位作者 胡金峰 秦军 戴健 费有蝶 朱振 《浙江电力》 2024年第3期84-94,共11页
配电网中准确的拓扑结构辨识对运行和控制具有重要意义,针对实际配电网拓扑结构变动的情况,搭建了可智能辨识配电网拓扑结构的深度学习模型。首先,生成不同拓扑结构下的配电网量测数据并进行数据预处理。其次,构建了融合CNN(卷积神经网... 配电网中准确的拓扑结构辨识对运行和控制具有重要意义,针对实际配电网拓扑结构变动的情况,搭建了可智能辨识配电网拓扑结构的深度学习模型。首先,生成不同拓扑结构下的配电网量测数据并进行数据预处理。其次,构建了融合CNN(卷积神经网络)、LSTM(长短期记忆网络)和Attention(注意力机制)的拓扑结构智能辨识模型,并结合历史量测数据对模型训练并测试。最后,在IEEE 33节点和PG&E69节点配电系统仿真算例中,验证了该基于CNN-LSTM-Attention模型的拓扑辨识方法相较于传统辨识方法在辨识精度上的优越性,实现了该模型的在线应用。 展开更多
关键词 配电网 拓扑辨识 卷积神经网络 长短期记忆网络 注意力机制
下载PDF
基于Attention-LSTM的低硅冶炼硅含量预测研究
14
作者 贺锦峰 张屹龙 +2 位作者 曹益春 谭涛 陈斌 《机电工程技术》 2024年第9期56-59,共4页
在钢铁冶炼过程中,钢铁冶炼中硅含量的准确预测对于保证合金质量和生产效率至关重要。针对高炉低硅冶炼过程中各生产因素相互作用复杂,数据质量较低,时间序列数据特征复杂等特点,提出了一种基于结合注意力(Attention)机制的长短时间记忆... 在钢铁冶炼过程中,钢铁冶炼中硅含量的准确预测对于保证合金质量和生产效率至关重要。针对高炉低硅冶炼过程中各生产因素相互作用复杂,数据质量较低,时间序列数据特征复杂等特点,提出了一种基于结合注意力(Attention)机制的长短时间记忆(LSTM)神经网络的低硅冶炼硅含量预测方法。该方法克服了传统LSTM模型在复杂关联性捕捉和重要信息提取方面的不足,并通过实验证明了其在低硅冶炼硅含量预测中的有效性和可行性。相比于传统的LSTM与门控循环单元(GRU)网络相比,所提方法平均绝对误差分别降低了1.6%和0.5%,平均绝对缩放误差分别降低了0.22%和0.02%,平均绝对百分比误差分别降低了8.9%和5.7%,预测精度更高,这表明了Attention-LSTM在提高硅含量预测精度方面的巨大潜力,为钢铁冶炼生产提供了重要的理论支持和实践指导。 展开更多
关键词 低硅冶炼 硅含量预测 注意力机制 长短期记忆网络 预测方法
下载PDF
基于Attention机制的音乐生成模型
15
作者 白勇 冯永磊 《微型计算机》 2024年第9期40-42,共3页
为了让模型生成的音乐更加贴近真实音乐,提出一种基于Attention机制的音乐生成模型。模型的编码器和解码器由LSTM构成,完成对音乐的编码和解码工作。并将Attention机制引入到编码器和解码器中间,利用Attention机制的特点让解码器的视野... 为了让模型生成的音乐更加贴近真实音乐,提出一种基于Attention机制的音乐生成模型。模型的编码器和解码器由LSTM构成,完成对音乐的编码和解码工作。并将Attention机制引入到编码器和解码器中间,利用Attention机制的特点让解码器的视野更加集中,更加关注对当前音符影响更大的信息,从而使模型生成的音乐结构稳定,更有质量。最后对模型生成的音乐进行验证,结果证明了该模型的有效性。 展开更多
关键词 注意力机制 音乐生成 深度学习 长短期记忆网络
下载PDF
基于VMD-BiLSTM-Attention的抽水蓄能机组性能劣化趋势预测 被引量:4
16
作者 方娜 李新新 +1 位作者 马森源 刘铮光 《中国农村水利水电》 北大核心 2023年第8期272-278,287,共8页
为提高抽水蓄能机组的安全稳定运行能力,解析其运行状态,获取机组设备的健康状况,准确预测其未来发展趋势,提出一种融合变分模态分解(VMD)和注意力机制(AM)的双向长短期记忆网络(BiLSTM)的趋势预测模型。首先,利用Bagging算法建立考虑... 为提高抽水蓄能机组的安全稳定运行能力,解析其运行状态,获取机组设备的健康状况,准确预测其未来发展趋势,提出一种融合变分模态分解(VMD)和注意力机制(AM)的双向长短期记忆网络(BiLSTM)的趋势预测模型。首先,利用Bagging算法建立考虑机组有功功率、工作水头、导叶开度和转速等影响的健康状态模型;其次,依据健康状态模型,计算机组的劣化趋势序列,利用VMD算法对趋势序列进行分解,得到多个平滑稳定的模态分量;最后,对每个模态分量建立双向长短期记忆网络和注意力机制结合的模型进行趋势预测,并将各分量预测结果叠加,得到机组最终的趋势预测结果。仿真结果表明,文中所提方法能准确地表达机组的劣化趋势,并能有效地提高劣化趋势的预测精度。 展开更多
关键词 劣化趋势预测 BAGGING算法 变分模态分解 双向长短期记忆网络 注意力机制
下载PDF
基于Attention-BiLSTM网络的车辆换道意图识别 被引量:1
17
作者 黄开启 罗涛 《浙江工业大学学报》 CAS 北大核心 2023年第3期264-270,共7页
针对换道意图识别方法仅考虑车辆历史状态信息,未充分利用车辆连续性和时序性特征的问题,提出了一种基于Attention-BiLSTM网络的换道意图识别方法。首先,分析行驶车辆之间的交互行为,采用双向长短期记忆网络学习换道意图特征编码信息;其... 针对换道意图识别方法仅考虑车辆历史状态信息,未充分利用车辆连续性和时序性特征的问题,提出了一种基于Attention-BiLSTM网络的换道意图识别方法。首先,分析行驶车辆之间的交互行为,采用双向长短期记忆网络学习换道意图特征编码信息;其次,通过引入模拟人脑推理行为的注意力机制进行网络权重自适应分配,提高网络捕捉重要状态信息能力;最后,利用HighD车辆轨迹数据集对模型进行训练和评估。试验结果表明:所提出的Attention-BiLSTM模型与LSTM模型相比,其准确率和F1分数分别提高了13.2%和10.5%,有效提升网络对周围车辆换道意图的识别性能。 展开更多
关键词 换道意图识别 双向长短期记忆网络 注意力机制 交互行为
下载PDF
基于数据增强技术与CNN-BiLSTM-Attention的油田注水流量预测及效果
18
作者 李艳辉 王衍萌 《科学技术与工程》 北大核心 2023年第32期13896-13902,共7页
准确识别地层注水情况是油田开发的重要前提,对制定合理的注水发展规划也具有重要的指导意义。为准确预测注水,提出一种结合卷积神经网络、双向长短期记忆网络与注意力机制的油田注水流量预测方法,该方法首先将卷积神经网络(convolution... 准确识别地层注水情况是油田开发的重要前提,对制定合理的注水发展规划也具有重要的指导意义。为准确预测注水,提出一种结合卷积神经网络、双向长短期记忆网络与注意力机制的油田注水流量预测方法,该方法首先将卷积神经网络(convolutional neural network,CNN)和双向长短期记忆网络(bidirection long short-term memory,BiLSTM)进行联合,用于捕获注水流量的复杂非线性时空关系,然后采用注意力机制来关注输入的重要特征。并针对油田历史数据匮乏问题,提出使用数据增强技术来增加一维时间序列的数据量。采用国内某油田注水井真实历史注水数据进行实验。结果表明:所提出的CNN-BiLSTM-Attention预测模型的平均绝对误差(mean absolute error,MAE)、均方根误差(root mean square error,RMSE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和决定系数(coefficient of determination,R 2)分别为0.027、0.043、9.936和0.968,通过多种模型对比,表明该方法具有较高的预测精度,可以更准确地预测注水流量。采用数据增强技术可以有效提高模型的预测精度。研究成果可为油田精细化注水提供调整方案与高质量数据,从而为油田智能化开发提供理论依据。 展开更多
关键词 注水流量预测 数据增强 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 注意力机制
下载PDF
基于WGAN-GP和CNN-LSTM-Attention的短期光伏功率预测 被引量:14
19
作者 雷柯松 吐松江·卡日 +3 位作者 伊力哈木·亚尔买买提 苏宁 吴现 崔传世 《电力系统保护与控制》 EI CSCD 北大核心 2023年第9期108-118,共11页
针对非晴天天气类型历史数据量匮乏导致光伏功率预测精度低的问题,提出了一种含有梯度惩罚的改进生成对抗网络(Wasserstein generative adversarial network with gradient penalty,WGAN-GP)和CNN-LSTM-Attention光伏功率短期预测模型... 针对非晴天天气类型历史数据量匮乏导致光伏功率预测精度低的问题,提出了一种含有梯度惩罚的改进生成对抗网络(Wasserstein generative adversarial network with gradient penalty,WGAN-GP)和CNN-LSTM-Attention光伏功率短期预测模型。首先,利用K-means++聚类算法将历史光伏数据划分为若干天气类型,使用WGAN-GP生成符合各天气类型数据分布规律的高质量新样本,实现训练集数据增强。其次,结合卷积神经网络(convolutional neural network,CNN)在特征提取上的优势和长短期记忆网络(long short-term memory,LSTM)在时间序列预测上的优势,提升预测模型学习光伏功率与气象数据间长期映射关系的能力。此外,引入注意力机制(Attention)弥补输入序列长时LSTM难以保留关键信息的不足。实验结果表明:基于WGAN-GP对各类型天气样本扩充能有效提高预测精度;与3种经典预测模型相比,所提出的CNN-LSTM-Attention模型具有更高的预测精度。 展开更多
关键词 光伏功率预测 生成对抗网络 卷积神经网络 长短期记忆网络 注意力机制
下载PDF
基于LSTM-Attention的锂电池SoC预测
20
作者 蒋永辉 《信息与电脑》 2023年第9期99-101,106,共4页
电池荷电状态(Stateof Charge,SoC)对新能源汽车安全行驶非常重要。文章提出一种基于长短期记忆网络(Long Short-Term Memory,LSTM)和注意力机制(Attention)的锂电池SoC预测方法。该方法将电池放电电流、电压、温度等电池工作历史参数... 电池荷电状态(Stateof Charge,SoC)对新能源汽车安全行驶非常重要。文章提出一种基于长短期记忆网络(Long Short-Term Memory,LSTM)和注意力机制(Attention)的锂电池SoC预测方法。该方法将电池放电电流、电压、温度等电池工作历史参数作为输入,通过在LSTM神经网络中训练,并在LSTM神经网络中引入注意力机制,聚焦对当前SoC影响更大的历史参数,实现更为精确的锂电池SoC预测。实验证明,本方法比LSTM神经网络具有更好的预测性能,有较好的应用前景。 展开更多
关键词 电池荷电状态(SoC)预测 长短期记忆(LSTM)神经网络 注意力机制 新能源汽车
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部