期刊文献+
共找到1,224篇文章
< 1 2 62 >
每页显示 20 50 100
Using ontology semantics to improve text documents clustering 被引量:8
1
作者 罗娜 左万利 +2 位作者 袁福宇 张靖波 张慧杰 《Journal of Southeast University(English Edition)》 EI CAS 2006年第3期370-374,共5页
In order to improve the clustering results and select in the results, the ontology semantic is combined with document clustering. A new document clustering algorithm based WordNet in the phrase of document processing ... In order to improve the clustering results and select in the results, the ontology semantic is combined with document clustering. A new document clustering algorithm based WordNet in the phrase of document processing is proposed. First, every word vector by new entities is extended after the documents are represented by tf-idf. Then the feature extracting algorithm is applied for the documents. Finally, the algorithm of ontology aggregation clustering (OAC) is proposed to improve the result of document clustering. Experiments are based on the data set of Reuters 20 News Group, and experimental results are compared with the results obtained by mutual information(MI). The conclusion draws that the proposed algorithm of document clustering based on ontology is better than the other existed clustering algorithms such as MNB, CLUTO, co-clustering, etc. 展开更多
关键词 ONTOLOGY text clustering LEXICON WORDNET
下载PDF
Fuzzy c-means text clustering based on topic concept sub-space 被引量:3
2
作者 吉翔华 陈超 +1 位作者 邵正荣 俞能海 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期439-442,共4页
To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Con... To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision. 展开更多
关键词 TCS2FCM topic concept space fuzzy c-means clustering text clustering
下载PDF
Ontology-based similarity measure for text clustering 被引量:1
3
作者 颜端武 李晓鹏 +1 位作者 王磊 成晓 《Journal of Southeast University(English Edition)》 EI CAS 2006年第3期389-393,共5页
A method that combines category-based and keyword-based concepts for a better information retrieval system is introduced. To improve document clustering, a document similarity measure based on cosine vector and keywor... A method that combines category-based and keyword-based concepts for a better information retrieval system is introduced. To improve document clustering, a document similarity measure based on cosine vector and keywords frequency in documents is proposed, but also with an input ontology. The ontology is domain specific and includes a list of keywords organized by degree of importance to the categories of the ontology, and by means of semantic knowledge, the ontology can improve the effects of document similarity measure and feedback of information retrieval systems. Two approaches to evaluating the performance of this similarity measure and the comparison with standard cosine vector similarity measure are also described. 展开更多
关键词 similarity measure text clustering ONTOLOGY information retrieval system
下载PDF
Agricultural Ontology Based Feature Optimization for Agricultural Text Clustering 被引量:4
4
作者 SU Ya-ru WANG Ru-jing +3 位作者 CHEN Peng WEI Yuan-yuan LI Chuan-xi HU Yi-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第5期752-759,共8页
Feature optimization is important to agricultural text mining. Usually, the vector space model is used to represent text documents. However, this basic approach still suffers from two drawbacks: thecurse of dimension... Feature optimization is important to agricultural text mining. Usually, the vector space model is used to represent text documents. However, this basic approach still suffers from two drawbacks: thecurse of dimension and the lack of semantic information. In this paper, a novel ontology-based feature optimization method for agricultural text was proposed. First, terms of vector space model were mapped into concepts of agricultural ontology, which concept frequency weights are computed statistically by term frequency weights; second, weights of concept similarity were assigned to the concept features according to the structure of the agricultural ontology. By combining feature frequency weights and feature similarity weights based on the agricultural ontology, the dimensionality of feature space can be reduced drastically. Moreover, the semantic information can be incorporated into this method. The results showed that this method yields a significant improvement on agricultural text clustering by the feature optimization. 展开更多
关键词 agricultural ontology feature optimization agricultural text clustering
下载PDF
News Text Topic Clustering Optimized Method Based on TF-IDF Algorithm on Spark 被引量:18
5
作者 Zhuo Zhou Jiaohua Qin +3 位作者 Xuyu Xiang Yun Tan Qiang Liu Neal N.Xiong 《Computers, Materials & Continua》 SCIE EI 2020年第1期217-231,共15页
Due to the slow processing speed of text topic clustering in stand-alone architecture under the background of big data,this paper takes news text as the research object and proposes LDA text topic clustering algorithm... Due to the slow processing speed of text topic clustering in stand-alone architecture under the background of big data,this paper takes news text as the research object and proposes LDA text topic clustering algorithm based on Spark big data platform.Since the TF-IDF(term frequency-inverse document frequency)algorithm under Spark is irreversible to word mapping,the mapped words indexes cannot be traced back to the original words.In this paper,an optimized method is proposed that TF-IDF under Spark to ensure the text words can be restored.Firstly,the text feature is extracted by the TF-IDF algorithm combined CountVectorizer proposed in this paper,and then the features are inputted to the LDA(Latent Dirichlet Allocation)topic model for training.Finally,the text topic clustering is obtained.Experimental results show that for large data samples,the processing speed of LDA topic model clustering has been improved based Spark.At the same time,compared with the LDA topic model based on word frequency input,the model proposed in this paper has a reduction of perplexity. 展开更多
关键词 News text topic clustering spark platform countvectorizer algorithm TF-IDF algorithm latent dirichlet allocation model
下载PDF
A New Feature Selection Method for Text Clustering 被引量:3
6
作者 XU Junling XU Baowen +2 位作者 ZHANG Weifeng CUI Zifeng ZHANG Wei 《Wuhan University Journal of Natural Sciences》 CAS 2007年第5期912-916,共5页
Feature selection methods have been successfully applied to text categorization but seldom applied to text clustering due to the unavailability of class label information. In this paper, a new feature selection method... Feature selection methods have been successfully applied to text categorization but seldom applied to text clustering due to the unavailability of class label information. In this paper, a new feature selection method for text clustering based on expectation maximization and cluster validity is proposed. It uses supervised feature selection method on the intermediate clustering result which is generated during iterative clustering to do feature selection for text clustering; meanwhile, the Davies-Bouldin's index is used to evaluate the intermediate feature subsets indirectly. Then feature subsets are selected according to the curve of the Davies-Bouldin's index. Experiment is carried out on several popular datasets and the results show the advantages of the proposed method. 展开更多
关键词 feature selection text clustering unsupervised learning data preprocessing
下载PDF
An Incremental Algorithm of Text Clustering Based on Semantic Sequences 被引量:1
7
作者 FENG Zhonghui SHEN Junyi BAO Junpeng 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1340-1344,共5页
This paper proposed an incremental textclustering algorithm based on semantic sequence. Using similarity relation of semantic sequences and calculating the cover of similarity semantic sequences set, the candidate clu... This paper proposed an incremental textclustering algorithm based on semantic sequence. Using similarity relation of semantic sequences and calculating the cover of similarity semantic sequences set, the candidate cluster with minimum entropy overlap value was selected as a result cluster every time in this algorithm. The comparison of experimental results shows that the precision of the algorithm is higher than other algorithms under same conditions and this is obvious especially on long documents set. 展开更多
关键词 text clustering semantic sequence ENTROPY
下载PDF
Genetic-Frog-Leaping Algorithm for Text Document Clustering 被引量:1
8
作者 Lubna Alhenak Manar Hosny 《Computers, Materials & Continua》 SCIE EI 2019年第9期1045-1074,共30页
In recent years,the volume of information in digital form has increased tremendously owing to the increased popularity of the World Wide Web.As a result,the use of techniques for extracting useful information from lar... In recent years,the volume of information in digital form has increased tremendously owing to the increased popularity of the World Wide Web.As a result,the use of techniques for extracting useful information from large collections of data,and particularly documents,has become more necessary and challenging.Text clustering is such a technique;it consists in dividing a set of text documents into clusters(groups),so that documents within the same cluster are closely related,whereas documents in different clusters are as different as possible.Clustering depends on measuring the content(i.e.,words)of a document in terms of relevance.Nevertheless,as documents usually contain a large number of words,some of them may be irrelevant to the topic under consideration or redundant.This can confuse and complicate the clustering process and make it less accurate.Accordingly,feature selection methods have been employed to reduce data dimensionality by selecting the most relevant features.In this study,we developed a text document clustering optimization model using a novel genetic frog-leaping algorithm that efficiently clusters text documents based on selected features.The proposed approach is based on two metaheuristic algorithms:a genetic algorithm(GA)and a shuffled frog-leaping algorithm(SFLA).The GA performs feature selection,and the SFLA performs clustering.To evaluate its effectiveness,the proposed approach was tested on a well-known text document dataset:the“20Newsgroup”dataset from the University of California Irvine Machine Learning Repository.Overall,after multiple experiments were compared and analyzed,it was demonstrated that using the proposed algorithm on the 20Newsgroup dataset greatly facilitated text document clustering,compared with classical K-means clustering.Nevertheless,this improvement requires longer computational time. 展开更多
关键词 text documents clustering meta-heuristic algorithms shuffled frog-leaping algorithm genetic algorithm feature selection
下载PDF
Concept Association and Hierarchical Hamming Clustering Model in Text Classification
9
作者 SuGui-yang LiJian-hua MaYing-hua LiSheng-hong YinZhong-hang 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第3期339-342,共4页
We propose two models in this paper. The concept of association model is put forward to obtain the co-occurrence relationships among keywords in the documents and the hierarchical Hamming clustering model is used to r... We propose two models in this paper. The concept of association model is put forward to obtain the co-occurrence relationships among keywords in the documents and the hierarchical Hamming clustering model is used to reduce the dimensionality of the category feature vector space which can solve the problem of the extremely high dimensionality of the documents' feature space. The results of experiment indicate that it can obtain the co-occurrence relations among key-words in the documents which promote the recall of classification system effectively. The hierarchical Hamming clustering model can reduce the dimensionality of the category feature vector efficiently, the size of the vector space is only about 10% of the primary dimensionality. Key words text classification - concept association - hierarchical clustering - hamming clustering CLC number TN 915. 08 Foundation item: Supporteded by the National 863 Project of China (2001AA142160, 2002AA145090)Biography: Su Gui-yang (1974-), male, Ph. D candidate, research direction: information filter and text classification. 展开更多
关键词 text classification concept association hierarchical clustering hamming clustering
下载PDF
The Refinement Algorithm Consideration in Text Clustering Scheme Based on Multilevel Graph
10
作者 CHENJian-bin DONGXiang-jun SONGHan-tao 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期671-675,共5页
To construct a high efficient text clustering algorithm the multilevel graph model and the refinement algorithm used in the uncoarsening phase is discussed. The model is applied to text clustering. The performance of ... To construct a high efficient text clustering algorithm the multilevel graph model and the refinement algorithm used in the uncoarsening phase is discussed. The model is applied to text clustering. The performance of clustering algorithm has to be improved with the refinement algorithm application. The experiment result demonstrated that the multilevel graph text clustering algorithm is available. Key words text clustering - multilevel coarsen graph model - refinement algorithm - high-dimensional clustering CLC number TP301 Foundation item: Supported by the National Natural Science Foundation of China (60173051)Biography: CHEN Jian-bin(1970-), male, Associate professor, Ph. D., research direction: data mining. 展开更多
关键词 text clustering multilevel coarsen graph model refinement algorithm high-dimensional clustering
下载PDF
Similarity matrix-based K-means algorithm for text clustering
11
作者 曹奇敏 郭巧 吴向华 《Journal of Beijing Institute of Technology》 EI CAS 2015年第4期566-572,共7页
K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo... K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable. 展开更多
关键词 text clustering K-means algorithm similarity matrix F-MEASURE
下载PDF
FICW: Frequent Itemset Based Text Clustering with Window Constraint
12
作者 ZHOU Chong LU Yansheng ZOU Lei HU Rong 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1345-1351,共7页
Most of the existing text clustering algorithms overlook the fact that one document is a word sequence with semantic information. There is some important semantic information existed in the positions of words in the s... Most of the existing text clustering algorithms overlook the fact that one document is a word sequence with semantic information. There is some important semantic information existed in the positions of words in the sequence. In this paper, a novel method named Frequent Itemset-based Clustering with Window (FICW) was proposed, which makes use of the semantic information for text clustering with a window constraint. The experimental results obtained from tests on three (hypertext) text sets show that FICW outperforms the method compared in both clustering accuracy and efficiency. 展开更多
关键词 text clustering frequent itemsets search engine
下载PDF
Visualization of Special Features in “The Tale of Genji” by Text Mining and Correspondence Analysis with Clustering
13
作者 Hisako Hosoi Takayuki Yamagata +1 位作者 Yuya Ikarashi Nobuyuki Fujisawa 《Journal of Flow Control, Measurement & Visualization》 2014年第1期1-6,共6页
In this paper, visualization of special features in “The Tale of Genji”, which is a typical Japanese classical literature, is studied by text mining the auxiliary verbs and examining the similarity in the sentence s... In this paper, visualization of special features in “The Tale of Genji”, which is a typical Japanese classical literature, is studied by text mining the auxiliary verbs and examining the similarity in the sentence style by the correspondence analysis with clustering. The result shows that the text mining error in the number of auxiliary verbs can be as small as 15%. The extracted feature in this study supports the multiple authors of “The Tale of Genji”, which agrees well with the result by Murakami and Imanishi [1]. It is also found that extracted features are robust to the text mining error, which suggests that the classification error is less affected by the text mining error and the possible use of this technique for further statistical study in classical literatures. 展开更多
关键词 VISUALIZATION SCIENTIFIC Art The TALE of GENJI text Mining CORRESPONDENCE Analysis clustering
下载PDF
Clustering based segmentation of text in complex color images
14
作者 毛文革 王洪滨 张田文 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第4期387-394,共8页
We propose a novel scheme based on clustering analysis in color space to solve text segmentation in complex color images. Text segmentation includes automatic clustering of color space and foreground image generation.... We propose a novel scheme based on clustering analysis in color space to solve text segmentation in complex color images. Text segmentation includes automatic clustering of color space and foreground image generation. Two methods are also proposed for automatic clustering: The first one is to determine the optimal number of clusters and the second one is the fuzzy competitively clustering method based on competitively learning techniques. Essential foreground images obtained from any of the color clusters are combined into foreground images. Further performance analysis reveals the advantages of the proposed methods. 展开更多
关键词 text segmentation Fuzzy competitively clustering Optimal number of clusters Foreground images
下载PDF
Analysis of Semi-Supervised Text Clustering Algorithm on Marine Data
15
作者 Yu Jiang Dengwen Yu +3 位作者 Mingzhao Zhao Hongtao Bai Chong Wang Lili He 《Computers, Materials & Continua》 SCIE EI 2020年第7期207-216,共10页
Semi-supervised clustering improves learning performance as long as it uses a small number of labeled samples to assist un-tagged samples for learning.This paper implements and compares unsupervised and semi-supervise... Semi-supervised clustering improves learning performance as long as it uses a small number of labeled samples to assist un-tagged samples for learning.This paper implements and compares unsupervised and semi-supervised clustering analysis of BOA-Argo ocean text data.Unsupervised K-Means and Affinity Propagation(AP)are two classical clustering algorithms.The Election-AP algorithm is proposed to handle the final cluster number in AP clustering as it has proved to be difficult to control in a suitable range.Semi-supervised samples thermocline data in the BOA-Argo dataset according to the thermocline standard definition,and use this data for semi-supervised cluster analysis.Several semi-supervised clustering algorithms were chosen for comparison of learning performance:Constrained-K-Means,Seeded-K-Means,SAP(Semi-supervised Affinity Propagation),LSAP(Loose Seed AP)and CSAP(Compact Seed AP).In order to adapt the single label,this paper improves the above algorithms to SCKM(improved Constrained-K-Means),SSKM(improved Seeded-K-Means),and SSAP(improved Semi-supervised Affinity Propagationg)to perform semi-supervised clustering analysis on the data.A DSAP(Double Seed AP)semi-supervised clustering algorithm based on compact seeds is proposed as the experimental data shows that DSAP has a better clustering effect.The unsupervised and semi-supervised clustering results are used to analyze the potential patterns of marine data. 展开更多
关键词 Unsupervised learning semi-supervised learning text clustering
下载PDF
Graph Ranked Clustering Based Biomedical Text Summarization Using Top k Similarity
16
作者 Supriya Gupta Aakanksha Sharaff Naresh Kumar Nagwani 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2333-2349,共17页
Text Summarization models facilitate biomedical clinicians and researchers in acquiring informative data from enormous domain-specific literature within less time and effort.Evaluating and selecting the most informati... Text Summarization models facilitate biomedical clinicians and researchers in acquiring informative data from enormous domain-specific literature within less time and effort.Evaluating and selecting the most informative sentences from biomedical articles is always challenging.This study aims to develop a dual-mode biomedical text summarization model to achieve enhanced coverage and information.The research also includes checking the fitment of appropriate graph ranking techniques for improved performance of the summarization model.The input biomedical text is mapped as a graph where meaningful sentences are evaluated as the central node and the critical associations between them.The proposed framework utilizes the top k similarity technique in a combination of UMLS and a sampled probability-based clustering method which aids in unearthing relevant meanings of the biomedical domain-specific word vectors and finding the best possible associations between crucial sentences.The quality of the framework is assessed via different parameters like information retention,coverage,readability,cohesion,and ROUGE scores in clustering and non-clustering modes.The significant benefits of the suggested technique are capturing crucial biomedical information with increased coverage and reasonable memory consumption.The configurable settings of combined parameters reduce execution time,enhance memory utilization,and extract relevant information outperforming other biomedical baseline models.An improvement of 17%is achieved when the proposed model is checked against similar biomedical text summarizers. 展开更多
关键词 Biomedical text summarization UMLS BioBERT SDPMM clustering top K similarity PPF HITS page rank graph ranking
下载PDF
Hierarchical clustering based on single-pass for breaking topic detection and tracking 被引量:3
17
作者 Li Fenghuan Zhao Zongfei Wang Zhenyu 《High Technology Letters》 EI CAS 2018年第4期369-377,共9页
Single-pass is commonly used in topic detection and tracking( TDT) due to its simplicity,high efficiency and low cost. When dealing with large-scale data,time cost will increase sharply and clustering performance will... Single-pass is commonly used in topic detection and tracking( TDT) due to its simplicity,high efficiency and low cost. When dealing with large-scale data,time cost will increase sharply and clustering performance will be affected greatly. Aiming at this problem,hierarchical clustering algorithm based on single-pass is proposed,which is inspired by hierarchical and concurrent ideas to divide clustering process into three stages. News reports are classified into different categories firstly.Then there are twice single-pass clustering processes in the same category,and one agglomerative clustering among different categories. In addition,for semantic similarity in news reports,topic model is improved based on named entities. Experimental results show that the proposed method can effectively accelerate the process as well as improve the performance. 展开更多
关键词 TOPIC detection and tracking(TDT) single-pass HIERARCHICAL clustering text clustering TOPIC modeling
下载PDF
An Efficient Long Short-Term Memory Model for Digital Cross-Language Summarization
18
作者 Y.C.A.Padmanabha Reddy Shyam Sunder Reddy Kasireddy +2 位作者 Nageswara Rao Sirisala Ramu Kuchipudi Purnachand Kollapudi 《Computers, Materials & Continua》 SCIE EI 2023年第3期6389-6409,共21页
The rise of social networking enables the development of multilingual Internet-accessible digital documents in several languages.The digital document needs to be evaluated physically through the Cross-Language Text Su... The rise of social networking enables the development of multilingual Internet-accessible digital documents in several languages.The digital document needs to be evaluated physically through the Cross-Language Text Summarization(CLTS)involved in the disparate and generation of the source documents.Cross-language document processing is involved in the generation of documents from disparate language sources toward targeted documents.The digital documents need to be processed with the contextual semantic data with the decoding scheme.This paper presented a multilingual crosslanguage processing of the documents with the abstractive and summarising of the documents.The proposed model is represented as the Hidden Markov Model LSTM Reinforcement Learning(HMMlstmRL).First,the developed model uses the Hidden Markov model for the computation of keywords in the cross-language words for the clustering.In the second stage,bi-directional long-short-term memory networks are used for key word extraction in the cross-language process.Finally,the proposed HMMlstmRL uses the voting concept in reinforcement learning for the identification and extraction of the keywords.The performance of the proposed HMMlstmRL is 2%better than that of the conventional bi-direction LSTM model. 展开更多
关键词 text summarization reinforcement learning hidden markov model cross-language MULTILINGUAL
下载PDF
Document Clustering Using Graph Based Fuzzy Association Rule Generation
19
作者 P.Perumal 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期203-218,共16页
With the wider growth of web-based documents,the necessity of automatic document clustering and text summarization is increased.Here,document summarization that is extracting the essential task with appropriate inform... With the wider growth of web-based documents,the necessity of automatic document clustering and text summarization is increased.Here,document summarization that is extracting the essential task with appropriate information,removal of unnecessary data and providing the data in a cohesive and coherent manner is determined to be a most confronting task.In this research,a novel intelligent model for document clustering is designed with graph model and Fuzzy based association rule generation(gFAR).Initially,the graph model is used to map the relationship among the data(multi-source)followed by the establishment of document clustering with the generation of association rule using the fuzzy concept.This method shows benefit in redundancy elimination by mapping the relevant document using graph model and reduces the time consumption and improves the accuracy using the association rule generation with fuzzy.This framework is provided in an interpretable way for document clustering.It iteratively reduces the error rate during relationship mapping among the data(clusters)with the assistance of weighted document content.Also,this model represents the significance of data features with class discrimination.It is also helpful in measuring the significance of the features during the data clustering process.The simulation is done with MATLAB 2016b environment and evaluated with the empirical standards like Relative Risk Patterns(RRP),ROUGE score,and Discrimination Information Measure(DMI)respectively.Here,DailyMail and DUC 2004 dataset is used to extract the empirical results.The proposed gFAR model gives better trade-off while compared with various prevailing approaches. 展开更多
关键词 Document clustering text summarization fuzzy model association rule generation graph model relevance mapping feature patterns
下载PDF
Generating a multilingual taxonomy based on multilingual terminology clustering
20
作者 Chengzhi ZHANG 《Chinese Journal of Library and Information Science》 2011年第2期27-40,共14页
Taxonomy denotes the hierarchical structure of a knowledge organization system. It has important applications in knowledge navigation, semantic annotation and semantic search. It is a useful instrument to study the mu... Taxonomy denotes the hierarchical structure of a knowledge organization system. It has important applications in knowledge navigation, semantic annotation and semantic search. It is a useful instrument to study the multilingual taxonomy generated automatically under the dynamic information environment in which massive amounts of information are processed and found. Multilingual taxonomy is the core component of the multilingual thesaurus or ontology. This paper presents two methods of bilingual generated taxonomy: Cross-language terminology clustering and mixed-language based terminology clustering. According to our experimental results of terminology clustering related to four specific subject domains, we found that if the parallel corpus is used to cluster multilingual terminologies, the method of using mixed-language based terminology clustering outperforms that of using the cross-language terminology clustering. 展开更多
关键词 Multilingual taxonomy multilingual terminology clustering cross-language terminology clustering parallel corpus mixed language
下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部