A quality of service(QoS) guaranteed cross-layer resource allocation algorithm with physical layer, medium access control(MAC) layer and call admission control(CAC) considered simultaneously is proposed for the ...A quality of service(QoS) guaranteed cross-layer resource allocation algorithm with physical layer, medium access control(MAC) layer and call admission control(CAC) considered simultaneously is proposed for the full IP orthogonal frequency division multiple access(OFDMA) communication system, which can ensure the quality of multimedia services in full IP networks.The algorithm converts the physical layer resources such as subcarriers, transmission power, and the QoS metrics into equivalent bandwidth which can be distributed by the base station in all three layers. By this means, the QoS requirements in terms of bit error rate(BER), transmission delay and dropping probability can be guaranteed by the cross-layer optimal equivalent bandwidth allocation. The numerical results show that the proposed algorithm has higher spectrum efficiency compared to the existing systems.展开更多
The orthogonal frequency division multiple access( OFDMA) based communication system has been considered as the main trend of next-Generation communication system. But the existing resource allocation algorithm design...The orthogonal frequency division multiple access( OFDMA) based communication system has been considered as the main trend of next-Generation communication system. But the existing resource allocation algorithm designed for such system is always with high complexity thus hard to be realized. To solve such problem with the constraints of spectrum efficiency and buffer state,a novel cross-layer resource allocation algorithm( RAA) is proposed in this paper. The goal of our RAA is to maximize the system throughput while satisfying several practical constraints,such as fairness among services,head of line( Ho L) delay and diverse quality of service( Qo S) requirements. Due to these constraints,finding the optimal solution becomes a NPhard problem. Therefore in this paper a novel method to solve such problem with acceptable complexity is proposed within following steps: firstly,based on the link state we formulate the ideal subchannel allocation strategy as a convex optimization problem,which can be efficiently solved by our proposed lagrange multiplier technique subchannel allocation( LMTSA) algorithm; secondly,according to the obtained channel allocation matrix,a power allocation algorithm based on the water-filling power allocation( WPA) idea is deployed to get the optimal power allocation matrix combining with adaptive modulation and coding( AMC); finally,through a greedy algorithm,the ultimate subchannel and power allocation matrix can be obtained based on iterative method. The simulation results illustrate that we can achieve the higher throughput and better Qo S performance than the widely-used maximum throughput( MT) algorithm and round robin( RR) algorithm.展开更多
In this paper, a novel idea for rate allocation combining both vertical coupling and horizontal coupling constraints is proposed, and a unified utility function to balance two paradoxical issues: efficiency and fairne...In this paper, a novel idea for rate allocation combining both vertical coupling and horizontal coupling constraints is proposed, and a unified utility function to balance two paradoxical issues: efficiency and fairness, revenue and cost is elaborated in WCDMA networks. Then, the optimal rate allocation problem is formulated as a network utility maximization(NUM) model based on cross-layer design and end-to-end congestion control, aiming at exploring the impacts of wired networks and the characteristics of radio access networks(RANs) on rate allocation. Furthermore, a distributed algorithm is derived, which can effectively match load states between RANs and wired networks, followed by a detailed illustration of the practical implementations. Numerical results demonstrate a signifi cant performance improvement in the end-to-end throughput.展开更多
A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding...A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding system performance is investigated in a Rayleigh fading channel.Based on imperfect feedback information,a suboptimal power allocation(PA)scheme is derived to maximize the average spectral efficiency(SE)of the system.The scheme is based on a so-called compressed SNR criterion,and has a closed-form expression for positive power allocation,thus being computationally efficient.Moreover,it can improve SE of the presented CLD.Besides,due to better approximation,it obtains the performance close to the existing optimal approach which requires numerical search.Simulation results show that the proposed CLD with PA can achieve higher SE than the conventional CLD with equal power allocation scheme,and has almost the same performance as CLD with optimal PA.However,it has lower calculation complexity.展开更多
A cross-layer resource allocation scheme based on potential game(CLRA_ PG) is proposed for the downlink multi-cell orthogonal frequency-division multiple-access(OFDMA) system with universal frequency reuse.As a method...A cross-layer resource allocation scheme based on potential game(CLRA_ PG) is proposed for the downlink multi-cell orthogonal frequency-division multiple-access(OFDMA) system with universal frequency reuse.As a method to mitigate inter-cell interference(ICI),base station coordination has been considered.In the process of the objective function modeling,this paper adopts a pricing mechanism which not only maximizes the individual utility but also considers the interference to other users.Based on the potential game theory,the objective problem is converted to a potential function which can be easily solved.The Karush-Kuhn-Tucker(KKT) conditions and the iterative water-filling algorithm are employed to solve the constraint objective optimization problem.Moreover,extensive simulations are conducted to evaluate how the pricing factors affect the algorithm.At the same time,comparing with the traditional policy,our simulation results show that the proposed scheme can significantly improve the performance of the system.展开更多
Traditional resource allocation algorithms use the hierarchical system, which does not apply to the bad channel environment in broadband power line communication system. Introducing the idea of cross-layer can improve...Traditional resource allocation algorithms use the hierarchical system, which does not apply to the bad channel environment in broadband power line communication system. Introducing the idea of cross-layer can improve the utilization of resources and ensure the QoS of services. This paper proposes a cross-layer resource allocation on broadband power line based on QoS priority scheduling function on MAC layer. Firstly, the algorithm considers both of real-time users’ requirements for delay and non-real-time users’ requirements for queue length. And then user priority function is proposed. Then each user’s scheduled packets number is calculated according to its priority function. The scheduling sequences are based on the utility function. In physical layer, according to the scheduled packets, the algorithm allocates physical resources for packets. The simulation results show that the proposed algorithm give consideration to both latency and throughput of the system with improving users’ QoS.展开更多
This paper utilizes the cross-layer architecture to implement adaptive resource allocation in Orthogonal Frequency Division Multiple Access (OFDMA) based on the broadband wireless access system. According to the cro...This paper utilizes the cross-layer architecture to implement adaptive resource allocation in Orthogonal Frequency Division Multiple Access (OFDMA) based on the broadband wireless access system. According to the cross-layer architecture, the information in link layer is used for adaptive resource allocation in OFMDA. A new cross-layer adaptive resource allocation algorithm is developed which can guarantee the users to be in minimum average waiting time in link-layer and get the better spectrum utilization. Numerical results show that our scheme is appealing and can get about half of average waiting time less and 0.5 bps/Hz spectrum utilization more than the scheme in 1EEE802.16a.展开更多
A prediction based bandwidth allocation scheme for transporting MPEG VBR traffic is proposed by using the FARIMA (p,d,q) (fractional autoregressive integrated moving average) model.FARIMA (p,d,q) model is capable of ...A prediction based bandwidth allocation scheme for transporting MPEG VBR traffic is proposed by using the FARIMA (p,d,q) (fractional autoregressive integrated moving average) model.FARIMA (p,d,q) model is capable of capturing both the long range and short range dependence in the video traffic.A method is suggested to simplify the FARIMA model fitting procedure and hence to reduce the time of traffic modeling and prediction.The simulation experiments show that this scheme can significantly reduce the requirement of buffer size and the frame loss rate.展开更多
In this paper, a Stackelberg differential game based approach is proposed to solve the bandwidth allocation problems in satellite communication network. All the satellites are divided into two groups, one has high dow...In this paper, a Stackelberg differential game based approach is proposed to solve the bandwidth allocation problems in satellite communication network. All the satellites are divided into two groups, one has high download requirements, and the other one has low download requirements. Each satellites group has its own controller for bandwidth allocation, and can get payments from the satellites for the allocated resources. The relationships between the controllers and satellites are formed as a Stackelberg game. In our model, differential equation is introduced to describe the bandwidth dynamics for the whole satellite communication network. Combine the differential equation and Stackelberg game together, we can formulate the bandwidth allocation problems in satellite communication network as a Stackelber differential game. The solutions to the proposed game is solved based the Bellman dynamic equations. Numerical simulations are given to prove the effeteness and correctness of the proposed approach.展开更多
This paper presents a novel model for dynamic bandwidth allocation and rate coordination based on DiffServ and a bandwidth broker(BB). In this model, assignment of bandwidth was made according to a periodic trace of...This paper presents a novel model for dynamic bandwidth allocation and rate coordination based on DiffServ and a bandwidth broker(BB). In this model, assignment of bandwidth was made according to a periodic trace of network characteristics per application. And adjustment of transfer rate was accomplished through negotiation with applications by a bandwidth agent. This model was evaluated using network simulator 2 (NS-2), and distinct improvements were found in respects of delay and packet loss of overall network and single flow. Finally, the model was suggested to be leveraged to multimedia applications with properties of lower delay and lower packet loss.展开更多
The user association and wireless backhaul bandwidth allocation for a two-tier heterogeneous network (HetNet) in the mil- limeter wave (mmWave) band is proposed in this article. The two-tier HetNet is built up wit...The user association and wireless backhaul bandwidth allocation for a two-tier heterogeneous network (HetNet) in the mil- limeter wave (mmWave) band is proposed in this article. The two-tier HetNet is built up with a macro base station (MBS) and several small cell SBSs, where the MBS is assumed to be equipped with large-scale antenna arrays but the SBSs only have single-antenna capa- bility and they rely on the wireless link to the MBS for backhaul. The sum of logarithmic user rate, which is established according to the result of multi-user Multiple Input Mul- tiple Output (MIMO) downlink employing Zero-Force Beamforming (ZFBF), is chosen as the network utility for the objective func- tion. And a distributed optimization algorithm based on primal and dual decomposition is used to jointly optimize the user association variable xj,z and the wireless backhaul band- width factor α. Simulation results reveal that the distributed optimization algorithm jointly optimizing two variables outperforms the con- ventional SINR-based user association strate- gies.展开更多
To improve and optimize the bandwidth utilization for multi-service packet transporting system, a kind of Dynamic Full Bandwidth Utilized (DFBU) allocation algorithm allowing a single link to use far beyond its fair...To improve and optimize the bandwidth utilization for multi-service packet transporting system, a kind of Dynamic Full Bandwidth Utilized (DFBU) allocation algorithm allowing a single link to use far beyond its fair share bandwidth is presented. Three important parameters as the bound on max and minimum bandwidth, the maximum packet delay and the minimum bandwidth utilization are discussed and analyzed. Results of experiments show that the DFBU-algorithm is capable of making a single link in the system use all the spare bandwidth (up to full-bandwidth) while the performance of fairness and QoS requirement is still guaranteed.展开更多
Improving the information freshness is critical for the monitoring and controlling applications in the cellular Internet of Things(IoT).In this paper,we are interested in optimizing the bandwidth allocation dynamicall...Improving the information freshness is critical for the monitoring and controlling applications in the cellular Internet of Things(IoT).In this paper,we are interested in optimizing the bandwidth allocation dynamically to improve the information freshness of the short packet based uplink status updates,which is characterized by a recently proposed metric,age of information(Ao I).We first design a status update scheme with channel distribution information(CDI).By relaxing the hard bandwidth constraint and introducing a Lagrangian multiplier,we first decouple the multi-MTCD bandwidth allocation problem into a single MTCD Markov decision process(MDP).Under the MDP framework,after variable substitution,we obtain the single-MTCD status update scheme by solving a linear programming problem.Then,we adjust the Lagrangian multiplier to make the obtained scheme satisfy the relaxed bandwidth constraint.Finally,a greedy policy is built on the proposed scheme to adjust the bandwidth allocation in each slot to satisfy the hard bandwidth constraint.In the unknown environment without CDI,we further design a bandwidth allocation scheme which only maximizes the expected sum Ao I drop within each time slot.Simulation results show that in terms of AoI,the proposed schemes outperform the benchmark schemes.展开更多
Vehicular communications have recently attracted great interest due to their potential to improve the intelligence of the transportation system.When maintaining the high reliability and low latency in the vehicle-to-v...Vehicular communications have recently attracted great interest due to their potential to improve the intelligence of the transportation system.When maintaining the high reliability and low latency in the vehicle-to-vehicle(V2V)links as well as large capacity in the vehicle-to-infrastructure(V2I)links,it is essential to flexibility allocate the radio resource to satisfy the different requirements in the V2V communication.This paper proposes a new radio resources allocation system for V2V communications based on the proximal strategy optimization method.In this radio resources allocation framework,a vehicle or V2V link that is designed as an agent.And through interacting with the environment,it can learn the optimal policy based on the strategy gradient and make the decision to select the optimal sub-band and the transmitted power level.Because the proposed method can output continuous actions and multi-dimensional actions,it greatly reduces the implementation complexity of large-scale communication scenarios.The simulation results indicate that the allocation method proposed in this paper can meet the latency constraints and the requested capacity of V2V links under the premise of minimizing the interference to vehicle-to-infrastructure communications.展开更多
The bandwidth resources allocation strategies of the existing Internet of Vehicles(IoV) are mainly base on the communication architecture of the traditional 802.11 x in the wireless local area network(WLAN). The tradi...The bandwidth resources allocation strategies of the existing Internet of Vehicles(IoV) are mainly base on the communication architecture of the traditional 802.11 x in the wireless local area network(WLAN). The traditional communication architecture of IoV will easily cause significant delay and low Packet Delivery Ratio(PDR) for disseminating critical security beacons under the condition of high-speed movement, distance-varying communication, and mixed traffic. This paper proposes a novel bandwidth-link resources cooperative allocation strategy to achieve better communication performance under the road conditions of intelligent transportation systems(ITS). Firstly, in traffic scenarios, based on the characteristic to predict the relative position of the mobile transceivers, a strategy is developed to cooperate on the mobile cellular network and the Dedicated Short-Range Communications(DSRC). Secondly, by adopting the general network simulator NS3, the dedicated mobile channel models that are suitable for the data interaction of ITS, is applied to confirm the feasibility and reliability of the strategy. Finally, by the simulation, comparison, and analysis of some critical performance parame-ters, we conclude that the novel strategy does not only reduce the system delay but also improve the other communication performance indicators, such as the PDR and communication capacity.展开更多
In order to improve the transmission accuracy and efficiency of sensing and actuating signals in Internet of Things (loT) and ensure the system stability, an adaptive resource allocation algorithm is proposed, which...In order to improve the transmission accuracy and efficiency of sensing and actuating signals in Internet of Things (loT) and ensure the system stability, an adaptive resource allocation algorithm is proposed, which dynami- cally assigns the network bandwidth and priority among components according to their signals' frequency domain characteristics. A remote sensed and controlled unmanned ground vehicle (UGV) path tracking test-bed was devel- oped and multiple UGV's tracking error signals were measured in the simulation for performance evaluation. Results show that with the same network bandwidth constraints, the proposed algorithm can reduce,, the accumulated and maximum errors of UGV path tracking by over 60% compared with the conventional static algorithm.展开更多
The passive optical network(PON)technology has been drastically improved in recent years.In spite of using the optical technology,the utilization of the entire bandwidth is a very challenging task.The main categories ...The passive optical network(PON)technology has been drastically improved in recent years.In spite of using the optical technology,the utilization of the entire bandwidth is a very challenging task.The main categories of PON are the Ethernet passive optical network(EPON)and gigabit passive optical network(GPON).These two networks use the dynamic bandwidth allocation(DBA)algorithm to attain the maximum usage of bandwidth,which is provided in the network dynamically according to the need of the customers with the support of the service level agreement(SLA).This paper will provide a clear review about the DBA algorithm of both technologies as well as the comparison。展开更多
With the advancement of the Industrial Internet of Things(IoT),the rapidly growing demand for data collection and processing poses a huge challenge to the design of data transmission and computation resources in the i...With the advancement of the Industrial Internet of Things(IoT),the rapidly growing demand for data collection and processing poses a huge challenge to the design of data transmission and computation resources in the industrial scenario.Taking advantage of improved model accuracy by machine learning algorithms,we investigate the inner relationship of system performance and data transmission and computation resources,and then analyze the impacts of bandwidth allocation and computation resources on the accuracy of the system model in this paper.A joint bandwidth allocation and computation resource configuration scheme is proposed and the Karush-Kuhn-Tucker(KKT)conditions are used to get an optimal bandwidth allocation and computation configuration decision,which can minimize the total computation resource requirement and ensure the system accuracy meets the industrial requirements.Simulation results show that the proposed bandwidth allocation and computation resource configuration scheme can reduce the computing resource usage by 10%when compared to the average allocation strategy.展开更多
The spectrum allocation for cognitive radio networks(CRNs) has received considerable studies under the assumption that the bandwidth of spectrum holes is static. However, in practice, the bandwidth of spectrum holes i...The spectrum allocation for cognitive radio networks(CRNs) has received considerable studies under the assumption that the bandwidth of spectrum holes is static. However, in practice, the bandwidth of spectrum holes is time-varied due to primary user/secondary user(PU/SU) activity and mobility, which result in non-determinacy. This paper studies the spectrum allocation for CRNs with non-deterministic bandwidth of spectrum holes. We present a novel probability density function(PDF) through order statistics as well as its simplified form to describe the statistical properties of spectrum holes, with which a statistical spectrum allocation model based on stochastic multiple knapsack problem(MKP) is formulated for spectrum allocation with non-deterministic bandwidth of spectrum holes. To reduce the computational complexity, we transform this stochastic programming problem into a constant MKP through exploiting the properties of cumulative distribution function(CDF), which can be solved via MTHG algorithm by using auxiliary variables. Simulation results illustrate that the proposed statistical spectrum allocation algorithm can achieve better performance compared with the existing algorithms when the bandwidth of spectrum holes is time-varied.展开更多
In this paper, an energy efficient bandwidth allocation scheme is proposed for wireless communication systems. An optimal bandwidth expansion(OBE) scheme is proposed to assign the available system bandwidth for user...In this paper, an energy efficient bandwidth allocation scheme is proposed for wireless communication systems. An optimal bandwidth expansion(OBE) scheme is proposed to assign the available system bandwidth for users. When the system bandwidth does not reach the full load, the remaining bandwidth can be energy-efficiently assigned to the other users. Simulation results show that the energy efficiency of the proposed OBE scheme outperforms the traditional same bandwidth expansion(SBE) scheme. Thus, the proposed OBE can effectively assign the system bandwidth and improve energy efficiency.展开更多
基金supported by the National Natural Science Foundation of China(61271235)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions-Information and Communication Engineering
文摘A quality of service(QoS) guaranteed cross-layer resource allocation algorithm with physical layer, medium access control(MAC) layer and call admission control(CAC) considered simultaneously is proposed for the full IP orthogonal frequency division multiple access(OFDMA) communication system, which can ensure the quality of multimedia services in full IP networks.The algorithm converts the physical layer resources such as subcarriers, transmission power, and the QoS metrics into equivalent bandwidth which can be distributed by the base station in all three layers. By this means, the QoS requirements in terms of bit error rate(BER), transmission delay and dropping probability can be guaranteed by the cross-layer optimal equivalent bandwidth allocation. The numerical results show that the proposed algorithm has higher spectrum efficiency compared to the existing systems.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61302080)the National High Technology Research and Development Program of China(Grant No.2014AA01A705)
文摘The orthogonal frequency division multiple access( OFDMA) based communication system has been considered as the main trend of next-Generation communication system. But the existing resource allocation algorithm designed for such system is always with high complexity thus hard to be realized. To solve such problem with the constraints of spectrum efficiency and buffer state,a novel cross-layer resource allocation algorithm( RAA) is proposed in this paper. The goal of our RAA is to maximize the system throughput while satisfying several practical constraints,such as fairness among services,head of line( Ho L) delay and diverse quality of service( Qo S) requirements. Due to these constraints,finding the optimal solution becomes a NPhard problem. Therefore in this paper a novel method to solve such problem with acceptable complexity is proposed within following steps: firstly,based on the link state we formulate the ideal subchannel allocation strategy as a convex optimization problem,which can be efficiently solved by our proposed lagrange multiplier technique subchannel allocation( LMTSA) algorithm; secondly,according to the obtained channel allocation matrix,a power allocation algorithm based on the water-filling power allocation( WPA) idea is deployed to get the optimal power allocation matrix combining with adaptive modulation and coding( AMC); finally,through a greedy algorithm,the ultimate subchannel and power allocation matrix can be obtained based on iterative method. The simulation results illustrate that we can achieve the higher throughput and better Qo S performance than the widely-used maximum throughput( MT) algorithm and round robin( RR) algorithm.
基金supported by National Natural Science Foundation of China (61172079, 61231008, 61201141, 61301176)111 Project (B08038)+1 种基金National S&T Major Project (2010ZX03003001)Shaanxi Province Science and Technology Research and Development Program (2011KJXX-40)
文摘In this paper, a novel idea for rate allocation combining both vertical coupling and horizontal coupling constraints is proposed, and a unified utility function to balance two paradoxical issues: efficiency and fairness, revenue and cost is elaborated in WCDMA networks. Then, the optimal rate allocation problem is formulated as a network utility maximization(NUM) model based on cross-layer design and end-to-end congestion control, aiming at exploring the impacts of wired networks and the characteristics of radio access networks(RANs) on rate allocation. Furthermore, a distributed algorithm is derived, which can effectively match load states between RANs and wired networks, followed by a detailed illustration of the practical implementations. Numerical results demonstrate a signifi cant performance improvement in the end-to-end throughput.
基金Supported by the Foundation of Huaian Industrial Projects(HAG2013064)the Foundation of Huaiyin Institute of Technology(HGB1202)the Doctoral Fund of Ministry of Education of China(20093218120021)
文摘A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding system performance is investigated in a Rayleigh fading channel.Based on imperfect feedback information,a suboptimal power allocation(PA)scheme is derived to maximize the average spectral efficiency(SE)of the system.The scheme is based on a so-called compressed SNR criterion,and has a closed-form expression for positive power allocation,thus being computationally efficient.Moreover,it can improve SE of the presented CLD.Besides,due to better approximation,it obtains the performance close to the existing optimal approach which requires numerical search.Simulation results show that the proposed CLD with PA can achieve higher SE than the conventional CLD with equal power allocation scheme,and has almost the same performance as CLD with optimal PA.However,it has lower calculation complexity.
基金Supported by the National Key Technology R&D Program of China(No.2010ZX03003-001-01,2011 ZX03003-002-01)National Natural Science Foundation of China(No.61101109)the Co-building Project of Beijing Municipal Education Commission"G-RAN based Experimental Platform for Future Mobile Communications"
文摘A cross-layer resource allocation scheme based on potential game(CLRA_ PG) is proposed for the downlink multi-cell orthogonal frequency-division multiple-access(OFDMA) system with universal frequency reuse.As a method to mitigate inter-cell interference(ICI),base station coordination has been considered.In the process of the objective function modeling,this paper adopts a pricing mechanism which not only maximizes the individual utility but also considers the interference to other users.Based on the potential game theory,the objective problem is converted to a potential function which can be easily solved.The Karush-Kuhn-Tucker(KKT) conditions and the iterative water-filling algorithm are employed to solve the constraint objective optimization problem.Moreover,extensive simulations are conducted to evaluate how the pricing factors affect the algorithm.At the same time,comparing with the traditional policy,our simulation results show that the proposed scheme can significantly improve the performance of the system.
文摘Traditional resource allocation algorithms use the hierarchical system, which does not apply to the bad channel environment in broadband power line communication system. Introducing the idea of cross-layer can improve the utilization of resources and ensure the QoS of services. This paper proposes a cross-layer resource allocation on broadband power line based on QoS priority scheduling function on MAC layer. Firstly, the algorithm considers both of real-time users’ requirements for delay and non-real-time users’ requirements for queue length. And then user priority function is proposed. Then each user’s scheduled packets number is calculated according to its priority function. The scheduling sequences are based on the utility function. In physical layer, according to the scheduled packets, the algorithm allocates physical resources for packets. The simulation results show that the proposed algorithm give consideration to both latency and throughput of the system with improving users’ QoS.
基金Supported by the National Natural Science Foundation of China (No.60072048) the Doctoral Program Fund of Ministry of Education of China (No.20010561007).
文摘This paper utilizes the cross-layer architecture to implement adaptive resource allocation in Orthogonal Frequency Division Multiple Access (OFDMA) based on the broadband wireless access system. According to the cross-layer architecture, the information in link layer is used for adaptive resource allocation in OFMDA. A new cross-layer adaptive resource allocation algorithm is developed which can guarantee the users to be in minimum average waiting time in link-layer and get the better spectrum utilization. Numerical results show that our scheme is appealing and can get about half of average waiting time less and 0.5 bps/Hz spectrum utilization more than the scheme in 1EEE802.16a.
基金Supported by National Natural Science Foundation of China(No.69872 0 2 5) Natural Science Foundation of Tianjin (No99380 0 2 1 1 )
文摘A prediction based bandwidth allocation scheme for transporting MPEG VBR traffic is proposed by using the FARIMA (p,d,q) (fractional autoregressive integrated moving average) model.FARIMA (p,d,q) model is capable of capturing both the long range and short range dependence in the video traffic.A method is suggested to simplify the FARIMA model fitting procedure and hence to reduce the time of traffic modeling and prediction.The simulation experiments show that this scheme can significantly reduce the requirement of buffer size and the frame loss rate.
基金supported by National Science Foundation Project of P. R. China (No. 61501026, U1603116)
文摘In this paper, a Stackelberg differential game based approach is proposed to solve the bandwidth allocation problems in satellite communication network. All the satellites are divided into two groups, one has high download requirements, and the other one has low download requirements. Each satellites group has its own controller for bandwidth allocation, and can get payments from the satellites for the allocated resources. The relationships between the controllers and satellites are formed as a Stackelberg game. In our model, differential equation is introduced to describe the bandwidth dynamics for the whole satellite communication network. Combine the differential equation and Stackelberg game together, we can formulate the bandwidth allocation problems in satellite communication network as a Stackelber differential game. The solutions to the proposed game is solved based the Bellman dynamic equations. Numerical simulations are given to prove the effeteness and correctness of the proposed approach.
文摘This paper presents a novel model for dynamic bandwidth allocation and rate coordination based on DiffServ and a bandwidth broker(BB). In this model, assignment of bandwidth was made according to a periodic trace of network characteristics per application. And adjustment of transfer rate was accomplished through negotiation with applications by a bandwidth agent. This model was evaluated using network simulator 2 (NS-2), and distinct improvements were found in respects of delay and packet loss of overall network and single flow. Finally, the model was suggested to be leveraged to multimedia applications with properties of lower delay and lower packet loss.
基金supported by NSFC under Grant (61725101 and 61771036)the ZTE Corporation, State Key Lab of Rail Traffic Control and Safety Project under Grant (RCS2017ZZ004 and RCS2017ZT008)+1 种基金Beijing Natural Science Foundation under Grant L161009supported by the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University, under grant 2015D04
文摘The user association and wireless backhaul bandwidth allocation for a two-tier heterogeneous network (HetNet) in the mil- limeter wave (mmWave) band is proposed in this article. The two-tier HetNet is built up with a macro base station (MBS) and several small cell SBSs, where the MBS is assumed to be equipped with large-scale antenna arrays but the SBSs only have single-antenna capa- bility and they rely on the wireless link to the MBS for backhaul. The sum of logarithmic user rate, which is established according to the result of multi-user Multiple Input Mul- tiple Output (MIMO) downlink employing Zero-Force Beamforming (ZFBF), is chosen as the network utility for the objective func- tion. And a distributed optimization algorithm based on primal and dual decomposition is used to jointly optimize the user association variable xj,z and the wireless backhaul band- width factor α. Simulation results reveal that the distributed optimization algorithm jointly optimizing two variables outperforms the con- ventional SINR-based user association strate- gies.
文摘To improve and optimize the bandwidth utilization for multi-service packet transporting system, a kind of Dynamic Full Bandwidth Utilized (DFBU) allocation algorithm allowing a single link to use far beyond its fair share bandwidth is presented. Three important parameters as the bound on max and minimum bandwidth, the maximum packet delay and the minimum bandwidth utilization are discussed and analyzed. Results of experiments show that the DFBU-algorithm is capable of making a single link in the system use all the spare bandwidth (up to full-bandwidth) while the performance of fairness and QoS requirement is still guaranteed.
基金supported by the Natural Science Foundations of China under Grant(62171464,62171461)the National Key R&D Program of China(No.11112018YFB1801103)the Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu under Grant BK20212001。
文摘Improving the information freshness is critical for the monitoring and controlling applications in the cellular Internet of Things(IoT).In this paper,we are interested in optimizing the bandwidth allocation dynamically to improve the information freshness of the short packet based uplink status updates,which is characterized by a recently proposed metric,age of information(Ao I).We first design a status update scheme with channel distribution information(CDI).By relaxing the hard bandwidth constraint and introducing a Lagrangian multiplier,we first decouple the multi-MTCD bandwidth allocation problem into a single MTCD Markov decision process(MDP).Under the MDP framework,after variable substitution,we obtain the single-MTCD status update scheme by solving a linear programming problem.Then,we adjust the Lagrangian multiplier to make the obtained scheme satisfy the relaxed bandwidth constraint.Finally,a greedy policy is built on the proposed scheme to adjust the bandwidth allocation in each slot to satisfy the hard bandwidth constraint.In the unknown environment without CDI,we further design a bandwidth allocation scheme which only maximizes the expected sum Ao I drop within each time slot.Simulation results show that in terms of AoI,the proposed schemes outperform the benchmark schemes.
文摘Vehicular communications have recently attracted great interest due to their potential to improve the intelligence of the transportation system.When maintaining the high reliability and low latency in the vehicle-to-vehicle(V2V)links as well as large capacity in the vehicle-to-infrastructure(V2I)links,it is essential to flexibility allocate the radio resource to satisfy the different requirements in the V2V communication.This paper proposes a new radio resources allocation system for V2V communications based on the proximal strategy optimization method.In this radio resources allocation framework,a vehicle or V2V link that is designed as an agent.And through interacting with the environment,it can learn the optimal policy based on the strategy gradient and make the decision to select the optimal sub-band and the transmitted power level.Because the proposed method can output continuous actions and multi-dimensional actions,it greatly reduces the implementation complexity of large-scale communication scenarios.The simulation results indicate that the allocation method proposed in this paper can meet the latency constraints and the requested capacity of V2V links under the premise of minimizing the interference to vehicle-to-infrastructure communications.
基金supported in part by the National Natural Science Foundation of China (No.61573171)the Major Information Projects of State Ministry of Transportation (No.2013-364-836-900)
文摘The bandwidth resources allocation strategies of the existing Internet of Vehicles(IoV) are mainly base on the communication architecture of the traditional 802.11 x in the wireless local area network(WLAN). The traditional communication architecture of IoV will easily cause significant delay and low Packet Delivery Ratio(PDR) for disseminating critical security beacons under the condition of high-speed movement, distance-varying communication, and mixed traffic. This paper proposes a novel bandwidth-link resources cooperative allocation strategy to achieve better communication performance under the road conditions of intelligent transportation systems(ITS). Firstly, in traffic scenarios, based on the characteristic to predict the relative position of the mobile transceivers, a strategy is developed to cooperate on the mobile cellular network and the Dedicated Short-Range Communications(DSRC). Secondly, by adopting the general network simulator NS3, the dedicated mobile channel models that are suitable for the data interaction of ITS, is applied to confirm the feasibility and reliability of the strategy. Finally, by the simulation, comparison, and analysis of some critical performance parame-ters, we conclude that the novel strategy does not only reduce the system delay but also improve the other communication performance indicators, such as the PDR and communication capacity.
基金Supported by Natural Science Foundation of Tianjin (No. 07JCZDJC05800)Science and Technology Supporting Plan of Tianjin (No. 09ZCKFGX29200)
文摘In order to improve the transmission accuracy and efficiency of sensing and actuating signals in Internet of Things (loT) and ensure the system stability, an adaptive resource allocation algorithm is proposed, which dynami- cally assigns the network bandwidth and priority among components according to their signals' frequency domain characteristics. A remote sensed and controlled unmanned ground vehicle (UGV) path tracking test-bed was devel- oped and multiple UGV's tracking error signals were measured in the simulation for performance evaluation. Results show that with the same network bandwidth constraints, the proposed algorithm can reduce,, the accumulated and maximum errors of UGV path tracking by over 60% compared with the conventional static algorithm.
文摘The passive optical network(PON)technology has been drastically improved in recent years.In spite of using the optical technology,the utilization of the entire bandwidth is a very challenging task.The main categories of PON are the Ethernet passive optical network(EPON)and gigabit passive optical network(GPON).These two networks use the dynamic bandwidth allocation(DBA)algorithm to attain the maximum usage of bandwidth,which is provided in the network dynamically according to the need of the customers with the support of the service level agreement(SLA).This paper will provide a clear review about the DBA algorithm of both technologies as well as the comparison。
基金supported in part by the National Natural Science Foundation of China under Grant No. 62172445in part by the Young Talents Plan of Hunan Province,China
文摘With the advancement of the Industrial Internet of Things(IoT),the rapidly growing demand for data collection and processing poses a huge challenge to the design of data transmission and computation resources in the industrial scenario.Taking advantage of improved model accuracy by machine learning algorithms,we investigate the inner relationship of system performance and data transmission and computation resources,and then analyze the impacts of bandwidth allocation and computation resources on the accuracy of the system model in this paper.A joint bandwidth allocation and computation resource configuration scheme is proposed and the Karush-Kuhn-Tucker(KKT)conditions are used to get an optimal bandwidth allocation and computation configuration decision,which can minimize the total computation resource requirement and ensure the system accuracy meets the industrial requirements.Simulation results show that the proposed bandwidth allocation and computation resource configuration scheme can reduce the computing resource usage by 10%when compared to the average allocation strategy.
基金supported by the National Natural Science Foundation of China (No.61501065, 91438104,No.61571069 and No.61601067)the Fundamental Research Funds for the Central Universities (No.106112015CDJXY160002,No.106112016CDJXY160001)the Chongqing Research Program of Basic Research and Frontier Technology (No.CSTC2016JCYJA0021)
文摘The spectrum allocation for cognitive radio networks(CRNs) has received considerable studies under the assumption that the bandwidth of spectrum holes is static. However, in practice, the bandwidth of spectrum holes is time-varied due to primary user/secondary user(PU/SU) activity and mobility, which result in non-determinacy. This paper studies the spectrum allocation for CRNs with non-deterministic bandwidth of spectrum holes. We present a novel probability density function(PDF) through order statistics as well as its simplified form to describe the statistical properties of spectrum holes, with which a statistical spectrum allocation model based on stochastic multiple knapsack problem(MKP) is formulated for spectrum allocation with non-deterministic bandwidth of spectrum holes. To reduce the computational complexity, we transform this stochastic programming problem into a constant MKP through exploiting the properties of cumulative distribution function(CDF), which can be solved via MTHG algorithm by using auxiliary variables. Simulation results illustrate that the proposed statistical spectrum allocation algorithm can achieve better performance compared with the existing algorithms when the bandwidth of spectrum holes is time-varied.
基金supported by the NSC under Grant No.101-2221-E-324-024
文摘In this paper, an energy efficient bandwidth allocation scheme is proposed for wireless communication systems. An optimal bandwidth expansion(OBE) scheme is proposed to assign the available system bandwidth for users. When the system bandwidth does not reach the full load, the remaining bandwidth can be energy-efficiently assigned to the other users. Simulation results show that the energy efficiency of the proposed OBE scheme outperforms the traditional same bandwidth expansion(SBE) scheme. Thus, the proposed OBE can effectively assign the system bandwidth and improve energy efficiency.