期刊文献+
共找到7,207篇文章
< 1 2 250 >
每页显示 20 50 100
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
1
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing scheduling chimp optimization algorithm whale optimization algorithm
下载PDF
Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty
2
作者 Xin Dai Liang Zhao +4 位作者 Renchu He Wenli Du Weimin Zhong Zhi Li Feng Qian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期152-166,共15页
Crude oil scheduling optimization is an effective method to enhance the economic benefits of oil refining.But uncertainties,including uncertain demands of crude distillation units(CDUs),might make the production plans... Crude oil scheduling optimization is an effective method to enhance the economic benefits of oil refining.But uncertainties,including uncertain demands of crude distillation units(CDUs),might make the production plans made by the traditional deterministic optimization models infeasible.A data-driven Wasserstein distributionally robust chance-constrained(WDRCC)optimization approach is proposed in this paper to deal with demand uncertainty in crude oil scheduling.First,a new deterministic crude oil scheduling optimization model is developed as the basis of this approach.The Wasserstein distance is then used to build ambiguity sets from historical data to describe the possible realizations of probability distributions of uncertain demands.A cross-validation method is advanced to choose suitable radii for these ambiguity sets.The deterministic model is reformulated as a WDRCC optimization model for crude oil scheduling to guarantee the demand constraints hold with a desired high probability even in the worst situation in ambiguity sets.The proposed WDRCC model is transferred into an equivalent conditional value-at-risk representation and further derived as a mixed-integer nonlinear programming counterpart.Industrial case studies from a real-world refinery are conducted to show the effectiveness of the proposed method.Out-of-sample tests demonstrate that the solution of the WDRCC model is more robust than those of the deterministic model and the chance-constrained model. 展开更多
关键词 DISTRIBUTIONS Model optimization Crude oil scheduling Wasserstein distance Distributionally robust chance constraints
下载PDF
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer
3
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
下载PDF
An Elite-Class Teaching-Learning-Based Optimization for Reentrant Hybrid Flow Shop Scheduling with Bottleneck Stage
4
作者 Deming Lei Surui Duan +1 位作者 Mingbo Li Jing Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期47-63,共17页
Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid ... Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid flow shop scheduling problem(RHFSP)with a bottleneck stage is considered,and an elite-class teaching-learning-based optimization(ETLBO)algorithm is proposed to minimize maximum completion time.To produce high-quality solutions,teachers are divided into formal ones and substitute ones,and multiple classes are formed.The teacher phase is composed of teacher competition and teacher teaching.The learner phase is replaced with a reinforcement search of the elite class.Adaptive adjustment on teachers and classes is established based on class quality,which is determined by the number of elite solutions in class.Numerous experimental results demonstrate the effectiveness of new strategies,and ETLBO has a significant advantage in solving the considered RHFSP. 展开更多
关键词 Hybrid flow shop scheduling REENTRANT bottleneck stage teaching-learning-based optimization
下载PDF
Research on Flexible Job Shop Scheduling Based on Improved Two-Layer Optimization Algorithm
5
作者 Qinhui Liu Laizheng Zhu +2 位作者 Zhijie Gao Jilong Wang Jiang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期811-843,共33页
To improve the productivity,the resource utilization and reduce the production cost of flexible job shops,this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization p... To improve the productivity,the resource utilization and reduce the production cost of flexible job shops,this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization problem of flexible job shop considering workpiece batching.Firstly,a mathematical model is established to minimize the maximum completion time.Secondly,an improved two-layer optimization algorithm is designed:the outer layer algorithm uses an improved PSO(Particle Swarm Optimization)to solve the workpiece batching problem,and the inner layer algorithm uses an improved GA(Genetic Algorithm)to solve the dual-resource scheduling problem.Then,a rescheduling method is designed to solve the task disturbance problem,represented by machine failures,occurring in the workshop production process.Finally,the superiority and effectiveness of the improved two-layer optimization algorithm are verified by two typical cases.The case results show that the improved two-layer optimization algorithm increases the average productivity by 7.44% compared to the ordinary two-layer optimization algorithm.By setting the different numbers of AGVs(Automated Guided Vehicles)and analyzing the impact on the production cycle of the whole order,this paper uses two indicators,the maximum completion time decreasing rate and the average AGV load time,to obtain the optimal number of AGVs,which saves the cost of production while ensuring the production efficiency.This research combines the solved problem with the real production process,which improves the productivity and reduces the production cost of the flexible job shop,and provides new ideas for the subsequent research. 展开更多
关键词 Dual resource scheduling workpiece batching REscheduling particle swarm optimization genetic algorithm
下载PDF
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem
6
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved Harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
下载PDF
Enhanced Hybrid Equilibrium Strategy in Fog-Cloud Computing Networks with Optimal Task Scheduling
7
作者 Muchang Rao Hang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第5期2647-2672,共26页
More devices in the Intelligent Internet of Things(AIoT)result in an increased number of tasks that require low latency and real-time responsiveness,leading to an increased demand for computational resources.Cloud com... More devices in the Intelligent Internet of Things(AIoT)result in an increased number of tasks that require low latency and real-time responsiveness,leading to an increased demand for computational resources.Cloud computing’s low-latency performance issues in AIoT scenarios have led researchers to explore fog computing as a complementary extension.However,the effective allocation of resources for task execution within fog environments,characterized by limitations and heterogeneity in computational resources,remains a formidable challenge.To tackle this challenge,in this study,we integrate fog computing and cloud computing.We begin by establishing a fog-cloud environment framework,followed by the formulation of a mathematical model for task scheduling.Lastly,we introduce an enhanced hybrid Equilibrium Optimizer(EHEO)tailored for AIoT task scheduling.The overarching objective is to decrease both the makespan and energy consumption of the fog-cloud system while accounting for task deadlines.The proposed EHEO method undergoes a thorough evaluation against multiple benchmark algorithms,encompassing metrics likemakespan,total energy consumption,success rate,and average waiting time.Comprehensive experimental results unequivocally demonstrate the superior performance of EHEO across all assessed metrics.Notably,in the most favorable conditions,EHEO significantly diminishes both the makespan and energy consumption by approximately 50%and 35.5%,respectively,compared to the secondbest performing approach,which affirms its efficacy in advancing the efficiency of AIoT task scheduling within fog-cloud networks. 展开更多
关键词 Artificial intelligence of things fog computing task scheduling equilibrium optimizer differential evaluation algorithm local search
下载PDF
Two-Stage Optimal Scheduling of Community Integrated Energy System
8
作者 Ming Li Rifucairen Fu +4 位作者 Tuerhong Yaxiaer Yunping Zheng Abiao Huang Ronghui Liu Shunfu Lin 《Energy Engineering》 EI 2024年第2期405-424,共20页
From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling an... From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES. 展开更多
关键词 Integrated energy system two-stage optimal scheduling controllable loads rolling optimization
下载PDF
Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control
9
作者 Ximin Cao Xinglong Chen +2 位作者 He Huang Yanchi Zhang Qifan Huang 《Energy Engineering》 EI 2024年第4期1067-1089,共23页
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ... Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance. 展开更多
关键词 Load optimization model predictive control multi-time scale optimal scheduling photovoltaic consumption photovoltaic energy storage building
下载PDF
Optimized scheduling of integrated energy systems for low carbon economy considering carbon transaction costs
10
作者 Chao Liu Weiru Wang +2 位作者 Jing Li Xinyuan Liu Yongning Chi 《Global Energy Interconnection》 EI CSCD 2024年第4期377-390,共14页
With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This st... With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits. 展开更多
关键词 Demand response Combined cooling Heating and power system Carbon transaction costs Flexible electric and thermal loads optimal scheduling
下载PDF
Optimal Scheduling Strategy of Source-Load-Storage Based onWind Power Absorption Benefit
11
作者 Jie Ma Pengcheng Yue +6 位作者 Haozheng Yu Yuqing Zhang Youwen Zhang Cuiping Li Junhui Li Wenwen Qin Yong Guo 《Energy Engineering》 EI 2024年第7期1823-1846,共24页
In recent years,the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing,but the peak regulation capacity of the power grid in the three north regions of ... In recent years,the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing,but the peak regulation capacity of the power grid in the three north regions of China is limited,resulting in insufficient local wind power consumption capacity.Therefore,this paper proposes a two-layer optimal scheduling strategy based on wind power consumption benefits to improve the power grid’s wind power consumption capacity.The objective of the uppermodel is tominimize the peak-valley difference of the systemload,which ismainly to optimize the system load by using the demand response resources,and to reduce the peak-valley difference of the system load to improve the peak load regulation capacity of the grid.The lower scheduling model is aimed at maximizing the system operation benefit,and the scheduling model is selected based on the rolling schedulingmethod.The load-side schedulingmodel needs to reallocate the absorbed wind power according to the response speed,absorption benefit,and curtailment penalty cost of the two DR dispatching resources.Finally,the measured data of a power grid are simulated by MATLAB,and the results show that:the proposed strategy can improve the power grid’s wind power consumption capacity and get a large wind power consumption benefit. 展开更多
关键词 Wind power consumption two-layer optimal demand response rolling scheduling wind curtailment penalty
下载PDF
Multi-user Motion JPEG2000 over wireless LAN: run-time performance-energy optimization with application-aware cross-layer scheduling
12
作者 POLLIN Sofie LENOIR Gregory +2 位作者 LAFRUIT Gauthier DEJONGHE Antoine CATTHOOR Francky 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第z1期151-158,共8页
This paper introduces a video application-aware cross-layer framework for joint performance-energy optimization,considering the scenario of multiple users upstreaming real-time Motion JPEG2000 video streams to the acc... This paper introduces a video application-aware cross-layer framework for joint performance-energy optimization,considering the scenario of multiple users upstreaming real-time Motion JPEG2000 video streams to the access point of a WiFi wireless local area network and extends the PHY-MAC run-time cross-layer scheduling strategy that we introduced in (Mangharam et al., 2005; Pollin et al., 2005) to also consider congested network situations where video packets have to be dropped. We show that an optimal solution at PHY-MAC level can be highly suboptimal at application level, and then show that making the cross-layer framework application-aware through a prioritized dropping policy capitalizing on the inherent scalability of Motion JPEG2000 video streams leads to drastic average video quality improvements and inter-user quality variation reductions of as much as 10 dB PSNR, without affecting the overall energy consumption requirements. 展开更多
关键词 Performance-energy optimization Application-aware scheduling MOTION JPEG2000 WLAN MULTI-USER transmission
下载PDF
Research on Flexible Job Shop Scheduling Optimization Based on Segmented AGV 被引量:2
13
作者 Qinhui Liu Nengjian Wang +3 位作者 Jiang Li Tongtong Ma Fapeng Li Zhijie Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期2073-2091,共19页
As a typical transportation tool in the intelligent manufacturing system,Automatic Guided Vehicle(AGV)plays an indispensable role in the automatic production process of the workshop.Therefore,integrating AGV resources... As a typical transportation tool in the intelligent manufacturing system,Automatic Guided Vehicle(AGV)plays an indispensable role in the automatic production process of the workshop.Therefore,integrating AGV resources into production scheduling has become a research hotspot.For the scheduling problem of the flexible job shop adopting segmented AGV,a dual-resource scheduling optimization mathematical model of machine tools and AGVs is established by minimizing the maximum completion time as the objective function,and an improved genetic algorithmis designed to solve the problem in this study.The algorithmdesigns a two-layer codingmethod based on process coding and machine tool coding and embeds the task allocation of AGV into the decoding process to realize the real dual resource integrated scheduling.When initializing the population,three strategies are designed to ensure the diversity of the population.In order to improve the local search ability and the quality of the solution of the genetic algorithm,three neighborhood structures are designed for variable neighborhood search.The superiority of the improved genetic algorithmand the influence of the location and number of transfer stations on scheduling results are verified in two cases. 展开更多
关键词 Segmented AGV flexible job shop improved genetic algorithm scheduling optimization
下载PDF
Improvised Seagull Optimization Algorithm for Scheduling Tasks in Heterogeneous Cloud Environment 被引量:2
14
作者 Pradeep Krishnadoss Vijayakumar Kedalu Poornachary +1 位作者 Parkavi Krishnamoorthy Leninisha Shanmugam 《Computers, Materials & Continua》 SCIE EI 2023年第2期2461-2478,共18页
Well organized datacentres with interconnected servers constitute the cloud computing infrastructure.User requests are submitted through an interface to these servers that provide service to them in an on-demand basis... Well organized datacentres with interconnected servers constitute the cloud computing infrastructure.User requests are submitted through an interface to these servers that provide service to them in an on-demand basis.The scientific applications that get executed at cloud by making use of the heterogeneous resources being allocated to them in a dynamic manner are grouped under NP hard problem category.Task scheduling in cloud poses numerous challenges impacting the cloud performance.If not handled properly,user satisfaction becomes questionable.More recently researchers had come up with meta-heuristic type of solutions for enriching the task scheduling activity in the cloud environment.The prime aim of task scheduling is to utilize the resources available in an optimal manner and reduce the time span of task execution.An improvised seagull optimization algorithm which combines the features of the Cuckoo search(CS)and seagull optimization algorithm(SOA)had been proposed in this work to enhance the performance of the scheduling activity inside the cloud computing environment.The proposed algorithm aims to minimize the cost and time parameters that are spent during task scheduling in the heterogeneous cloud environment.Performance evaluation of the proposed algorithm had been performed using the Cloudsim 3.0 toolkit by comparing it with Multi objective-Ant Colony Optimization(MO-ACO),ACO and Min-Min algorithms.The proposed SOA-CS technique had produced an improvement of 1.06%,4.2%,and 2.4%for makespan and had reduced the overall cost to the extent of 1.74%,3.93%and 2.77%when compared with PSO,ACO,IDEA algorithms respectively when 300 vms are considered.The comparative simulation results obtained had shown that the proposed improvised seagull optimization algorithm fares better than other contemporaries. 展开更多
关键词 Cloud computing task scheduling cuckoo search(CS) seagull optimization algorithm(SOA)
下载PDF
Layered power scheduling optimization of PV hydrogen production system considering performance attenuation of PEMEL 被引量:1
15
作者 Yanhui Xu Haowei Chen 《Global Energy Interconnection》 EI CSCD 2023年第6期714-725,共12页
To analyze the additional cost caused by the performance attenuation of a proton exchange membrane electrolyzer(PEMEL)under the fluctuating input of renewable energy,this study proposes an optimization method for powe... To analyze the additional cost caused by the performance attenuation of a proton exchange membrane electrolyzer(PEMEL)under the fluctuating input of renewable energy,this study proposes an optimization method for power scheduling in hydrogen production systems under the scenario of photovoltaic(PV)electrolysis of water.First,voltage and performance attenuation models of the PEMEL are proposed,and the degradation cost of the electrolyzer under a fluctuating input is considered.Then,the calculation of the investment and operating costs of the hydrogen production system for a typical day is based on the life cycle cost.Finally,a layered power scheduling optimization method is proposed to reasonably distribute the power of the electrolyzer and energy storage system in a hydrogen production system.In the up-layer optimization,the PV power absorbed by the hydrogen production system was optimized using MALTAB+Gurobi.In low-layer optimization,the power allocation between the PEMEL and battery energy storage system(BESS)is optimized using a non-dominated sorting genetic algorithm(NSGA-Ⅱ)combined with the firefly algorithm(FA).A better optimization result,characterized by lower degradation and total costs,was obtained using the method proposed in this study.The improved algorithm can search for a better population and obtain optimization results in fewer iterations.As a calculation example,data from a PV power station in northwest China were used for optimization,and the effectiveness and rationality of the proposed optimization method were verified. 展开更多
关键词 PV electrolysis of water Proton exchange membrane electrolyzer Performance attenuation Degradation cost Power scheduling optimization
下载PDF
Multi-objective optimization in highway pavement maintenance and rehabilitation project selection and scheduling:A state-of-the-art review 被引量:2
16
作者 Mohammadhosein Pourgholamali Samuel Labi Kumares C.Sinha 《Journal of Road Engineering》 2023年第3期239-251,共13页
The motivation for cost-effective management of highway pavements is evidenced not only by the massive expenditures associated with these activities at a national level but also by the consequences of poor pavement co... The motivation for cost-effective management of highway pavements is evidenced not only by the massive expenditures associated with these activities at a national level but also by the consequences of poor pavement condition on road users.This paper presents a state-of-the-art review of multi-objective optimization(MOO)problems that have been formulated and solution techniques that have been used in selecting and scheduling highway pavement rehabilitation and maintenance activities.First,the paper presents a taxonomy and hierarchy for these activities,the role of funding sources,and levels of jurisdiction.The paper then describes how three different decision mechanisms have been used in past research and practice for project selection and scheduling(historical practices,expert opinion,and explicit mathematical optimization)and identifies the pros and cons of each mechanism.The paper then focuses on the optimization mechanism and presents the types of optimization problems,formulations,and objectives that have been used in the literature.Next,the paper examines various solution algorithms and discusses issues related to their implementation.Finally,the paper identifies some barriers to implementing multi-objective optimization in selecting and scheduling highway pavement rehabilitation and maintenance activities,and makes recommendations to overcome some of these barriers. 展开更多
关键词 Multi-objective optimization Highway pavement REHABILITATION Maintenance Project selection Project scheduling Decision mechanism Pavement management
下载PDF
Multi-Agent Deep Reinforcement Learning for Cross-Layer Scheduling in Mobile Ad-Hoc Networks
17
作者 Xinxing Zheng Yu Zhao +1 位作者 Joohyun Lee Wei Chen 《China Communications》 SCIE CSCD 2023年第8期78-88,共11页
Due to the fading characteristics of wireless channels and the burstiness of data traffic,how to deal with congestion in Ad-hoc networks with effective algorithms is still open and challenging.In this paper,we focus o... Due to the fading characteristics of wireless channels and the burstiness of data traffic,how to deal with congestion in Ad-hoc networks with effective algorithms is still open and challenging.In this paper,we focus on enabling congestion control to minimize network transmission delays through flexible power control.To effectively solve the congestion problem,we propose a distributed cross-layer scheduling algorithm,which is empowered by graph-based multi-agent deep reinforcement learning.The transmit power is adaptively adjusted in real-time by our algorithm based only on local information(i.e.,channel state information and queue length)and local communication(i.e.,information exchanged with neighbors).Moreover,the training complexity of the algorithm is low due to the regional cooperation based on the graph attention network.In the evaluation,we show that our algorithm can reduce the transmission delay of data flow under severe signal interference and drastically changing channel states,and demonstrate the adaptability and stability in different topologies.The method is general and can be extended to various types of topologies. 展开更多
关键词 Ad-hoc network cross-layer scheduling multi agent deep reinforcement learning interference elimination power control queue scheduling actorcritic methods markov decision process
下载PDF
Many-Objective Optimization-Based Task Scheduling in Hybrid Cloud Environments
18
作者 Mengkai Zhao Zhixia Zhang +2 位作者 Tian Fan Wanwan Guo Zhihua Cui 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2425-2450,共26页
Due to the security and scalability features of hybrid cloud architecture,it can bettermeet the diverse requirements of users for cloud services.And a reasonable resource allocation solution is the key to adequately u... Due to the security and scalability features of hybrid cloud architecture,it can bettermeet the diverse requirements of users for cloud services.And a reasonable resource allocation solution is the key to adequately utilize the hybrid cloud.However,most previous studies have not comprehensively optimized the performance of hybrid cloud task scheduling,even ignoring the conflicts between its security privacy features and other requirements.Based on the above problems,a many-objective hybrid cloud task scheduling optimization model(HCTSO)is constructed combining risk rate,resource utilization,total cost,and task completion time.Meanwhile,an opposition-based learning knee point-driven many-objective evolutionary algorithm(OBL-KnEA)is proposed to improve the performance of model solving.The algorithm uses opposition-based learning to generate initial populations for faster convergence.Furthermore,a perturbation-based multipoint crossover operator and a dynamic range mutation operator are designed to extend the search range.By comparing the experiments with other excellent algorithms on HCTSO,OBL-KnEA achieves excellent results in terms of evaluation metrics,initial populations,and model optimization effects. 展开更多
关键词 Hybrid cloud environment task scheduling many-objective optimization model many-objective optimization algorithm
下载PDF
Scheduling an Energy-Aware Parallel Machine System with Deteriorating and Learning Effects Considering Multiple Optimization Objectives and Stochastic Processing Time
19
作者 Lei Wang Yuxin Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期325-339,共15页
Currently,energy conservation draws wide attention in industrial manufacturing systems.In recent years,many studies have aimed at saving energy consumption in the process of manufacturing and scheduling is regarded as... Currently,energy conservation draws wide attention in industrial manufacturing systems.In recent years,many studies have aimed at saving energy consumption in the process of manufacturing and scheduling is regarded as an effective approach.This paper puts forwards a multi-objective stochastic parallel machine scheduling problem with the consideration of deteriorating and learning effects.In it,the real processing time of jobs is calculated by using their processing speed and normal processing time.To describe this problem in a mathematical way,amultiobjective stochastic programming model aiming at realizing makespan and energy consumption minimization is formulated.Furthermore,we develop a multi-objective multi-verse optimization combined with a stochastic simulation method to deal with it.In this approach,the multi-verse optimization is adopted to find favorable solutions from the huge solution domain,while the stochastic simulation method is employed to assess them.By conducting comparison experiments on test problems,it can be verified that the developed approach has better performance in coping with the considered problem,compared to two classic multi-objective evolutionary algorithms. 展开更多
关键词 Energy consumption optimization parallel machine scheduling multi-objective optimization deteriorating and learning effects stochastic simulation
下载PDF
Novel E2E-QoE Metric for PHY Optimization:A Cross-Layered Framework
20
作者 Lei Ji Hao Wang Hongxiang Xie 《China Communications》 SCIE CSCD 2023年第4期167-179,共13页
Existing systems use key performance indicators(KPIs)as metrics for physical layer(PHY)optimization,which suffers from the problem of overoptimization,because some unnecessary PHY enhancements are imperceptible to ter... Existing systems use key performance indicators(KPIs)as metrics for physical layer(PHY)optimization,which suffers from the problem of overoptimization,because some unnecessary PHY enhancements are imperceptible to terminal users and thus induce additional cost and energy waste.Therefore,it is necessary to utilize directly the quality of experience(QoE)of user as a metric of optimization,which can achieve the global optimum of QoE under cost and energy constraints.However,QoE is still a metric of application layer that cannot be easily used to design and optimize the PHY.To address this problem,we in this paper propose a novel end-to-end QoE(E2E-QoE)based optimization architecture at the user-side for the first time.Specifically,a cross-layer parameterized model is proposed to establish the relationship between PHY and E2E-QoE.Based on this,an E2E-QoE oriented PHY anomaly diagnosis method is further designed to locate the time and root cause of anomalies.Finally,we investigate to optimize the PHY algorithm directly based on the E2E-QoE.The proposed frameworks and algorithms are all validated using the data from real fifth-generation(5G)mobile system,which show that using E2E-QoE as the metric of PHY optimization is feasible and can outperform existing schemes. 展开更多
关键词 quality of experience(QoE) performance metric physical layer optimization cross-layer framework
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部