期刊文献+
共找到8,011篇文章
< 1 2 250 >
每页显示 20 50 100
In-situ physical/chemical cross-linked hydrogel electrolyte achieving ultra-stable zinc anode-electrolyte interface towards dendrite-free zinc ion battery
1
作者 Chen-Yang Li Jiang-Lin Wang +7 位作者 Dong-Ting Zhang Min-Peng Li Hao Chen Wei-Hai Yi Xin-Ying Ren Bao Liu Xue-Feng Lu Mao-Cheng Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期342-351,I0007,共11页
Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked ... Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked hydrogel electrolyte(carrageenan/polyacrylamide/ZnSO_(4),denoted as CPZ)has been developed to stabilize the zinc anode-electrolyte interface,which can eliminate side reactions and prevent dendrites growth.The in-situ CPZ hydrogel electrolyte improves the reversibility of zinc anode due to eliminating side reactions caused by active water molecules.Furthermore,the electrostatic interaction between the SO_(4)^(-)groups in CPZ and Zn^(2+)can encourage the preferential deposition of zinc atoms on(002)crystal plane,which achieve dendrite-free and homogeneous zinc deposition.The in-situ hydrogel electrolyte offers a streamlined approach to battery manufacturing by allowing for direct integration into the battery.Subsequently,the Zn//Zn half battery with CPZ hydrogel electrolyte can enable an ultra-long cycle over 5500 h at a current density of 0.5 mA cm^(-2),and the Zn//Cu half battery reach an average coulombic efficiency of 99.37%.The Zn//V_(2)O_5-GO full battery with CPZ hydrogel electrolyte demonstrates94.5%of capacity retention after 2100 cycles.This study is expected to open new thought for the development of commercial hydrogel electrolytes for low-cost and long-life zinc-ion batteries. 展开更多
关键词 In-suit CPZ hydrogel electrolyte Hydrogen evolution reaction and zinc corrosion Dendrites growth Zinc anode-electrolyte interface Zn ion batteries
下载PDF
Netrin-1 co-cross-linked hydrogel accelerates diabetic wound healing in situ by modulating macrophage heterogeneity and promoting angiogenesis
2
作者 Futing Shu Hongchao Huang +2 位作者 Shichu Xiao Zhaofan Xia Yongjun Zheng 《Bioactive Materials》 SCIE CSCD 2024年第9期302-316,共15页
Diabetic wounds,characterized by prolonged inflammation and impaired vascularization,are a serious complication of diabetes.This study aimed to design a gelatin methacrylate(GelMA)hydrogel for the sustained release of... Diabetic wounds,characterized by prolonged inflammation and impaired vascularization,are a serious complication of diabetes.This study aimed to design a gelatin methacrylate(GelMA)hydrogel for the sustained release of netrin-1 and evaluate its potential as a scaffold to promote diabetic wound healing.The results showed that netrin-1 was highly expressed during the inflammation and proliferation phases of normal wounds,whereas it synchronously exhibited aberrantly low expression in diabetic wounds.Neutralization of netrin-1 inhibited normal wound healing,and the topical application of netrin-1 accelerated diabetic wound healing.Mechanistic studies demonstrated that netrin-1 regulated macrophage heterogeneity via the A2bR/STAT/PPARγsignaling pathway and promoted the function of endothelial cells,thus accelerating diabetic wound healing.These data suggest that netrin-1 is a potential therapeutic target for diabetic wounds. 展开更多
关键词 NETRIN-1 GelMA hydrogel Diabetic wound healing ANGIOGENESIS Macrophage heterogeneity
原文传递
Noncovalent cross-linked engineering hydrogel with low hysteresis and high sensitivity for flexible self-powered electronics
3
作者 Hang Yuan Shaowei Han +5 位作者 Jia Wei Songwei Li Peipei Yang Hao-Yang Mi Chuntai Liu Changyu Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期136-147,共12页
In this study,the hydrogel network was reinforced by covalent-like hydrogen bonding,and the strong binding ability of boron-nitrogen coordination served as the main driving force.Among them,acrylamide(AM)and 3-acrylam... In this study,the hydrogel network was reinforced by covalent-like hydrogen bonding,and the strong binding ability of boron-nitrogen coordination served as the main driving force.Among them,acrylamide(AM)and 3-acrylamidophenylboronic acid(AAPBA)were the main body,and the numerous hydroxyl groups in the trehalose(Treh)molecule and other polymer groups formed strong hydrogen bonding interactions to improve the mechanical properties of the PAM/PAAPBA/Treh(PAAT)hydrogel and ensured the simplicity of the synthesis process.The hydrogel possessed high strain at break(1239%),stress(64.7 kPa),low hysteresis(100%to 500%strain,corresponding to dissipation energy from 1.37 to 7.80 kJ/m^(3)),and outstanding cycling stability(retained more than 90%of maximum stress after 200 ten-sile cycles).By integrating carbon nanotubes(CNTs)into PAAT hydrogel(PAATC),the PAATC hydrogel with excellent strain response performance was successfully constructed.The PAATC conductive hydro-gel exhibited high sensitivity(gauge factor(GF)=10.58 and sensitivity(S)=0.304 kPa^(-1)),wide strain response range(0.5%-1000%),fast response time(450 ms),and short recovery time(350 ms),excellent fatigue resistance,and strain response stability.Furthermore,the PAATC-based triboelectric nanogener-ator(TENG)displayed outstanding energy harvesting performance,which shows its potential for appli-cation in self-powered electronic devices. 展开更多
关键词 Low hysteresis Covalent-like hydrogen bonding Boron-nitrogen coordination hydrogel sensor Triboelectric nanogenerator
下载PDF
Residual alkali-evoked cross-linked polymer layer for anti-air-sensitivity LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)cathode 被引量:1
4
作者 Chao Zhao Xuebao Li +7 位作者 Yun Zhao Jingjing He Yuanpeng Cao Wei Luo Ding Wang Jianguo Duan Xianshu Wang Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期450-458,共9页
High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)M... High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs. 展开更多
关键词 Lithium-ion batteries Nickel-rich layered cathode Residual alkalis cross-linked polyme rmodification Airsensitivity
下载PDF
Mechanism of high Li-ion conductivity in poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network based electrolyte revealed by solid-state NMR
5
作者 Fan Li Tiantian Dong +5 位作者 Yi Ji Lixin Liang Kuizhi Chen Huanrui Zhang Guanglei Cui Guangjin Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期377-383,I0010,共8页
Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked pol... Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked polymers have the potential to further improve the mechanical property without trading off Li-ion conductivity.In this study,focusing on a recently developed cross-linked SPE,i.e.,the one based on poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network(PVCN),we used solid-state nuclear magnetic resonance(NMR)techniques to investigate the fundamental interaction between the chain segments and Li ions,as well as the lithium-ion motion.By utilizing homonuclear/heteronuclear correlation,CP(cross-polarization)kinetics,and spin-lattice relaxation experiments,etc.,we revealed the structural characteristics and their relations to lithium-ion mobilities.It is found that the network formation prevents poly(ethylene oxide)chains from crystallization,which could create sufficient space for segmental tumbling and Li-ion co nductio n.As such,the mechanical property is greatly improved with even higher Li-ion mobilities compared to the poly(vinylene carbonate)or poly(ethylene oxide)based SPE analogues. 展开更多
关键词 ssNMR Lithium-ion mobility cross-link Solid polymer electrolyte
下载PDF
Tuning the cross-linked structure of basic poly(ionic liquid)to develop an efficient catalyst for the conversion of vinyl carbonate to dimethyl carbonate
6
作者 Zhaoyang Qi Shiquan Zhong +4 位作者 Huiyun Su Changshen Ye Limei Ren Ting Qiu Jie Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期106-116,共11页
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ... Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC. 展开更多
关键词 Poly(ionic liquid) cross-linking degree Dimethyl carbonate production Transesterification reaction Mechanism
下载PDF
Genipin Cross-Linked Polyvinyl Alcohol-Gelatin Hydrogel for Bone Regeneration 被引量:1
7
作者 Thi-Hiep Nguyen Reiza Ventura +1 位作者 Young-Ki Min Byong-Taek Lee 《Journal of Biomedical Science and Engineering》 2016年第9期419-429,共12页
Polyvinyl alcohol gelatin hydrogels were fabricated using genipin as a crosslinking agent for bone regeneration application. Optimized formulation of PVA-GE hydrogel was fabricated using genipin as crosslinking agent.... Polyvinyl alcohol gelatin hydrogels were fabricated using genipin as a crosslinking agent for bone regeneration application. Optimized formulation of PVA-GE hydrogel was fabricated using genipin as crosslinking agent. Characterizations such as FTIR, morphology, porosity, pore size, degradation and swelling rate were investigated. Bone regeneration potential of optimized genipin cross-linked polyvinyl alcohol-gelatin (PVA20) hydrogels was assessed by implanting in rabbit’s femur defect for 1, 5 and 15 weeks period. Results showed interconnected porosity as observed in scanning electron microscopy and successful crosslinking as confirmed by FTIR analysis. Increased porosity (92% ± 2.46%) and pore size distribution (100 - 200 μm) were also observed as well as decrease in swelling rate (426% ± 10.50%). Bone formation was evident in micro-CT after 5 and 15 days of in vivo implantation period. Micro-CT analysis showed 32.67% increased bone formation of PVA-GE hydrogel defect compared with negative control after 15 weeks of in-vivo implantation. Histological analyses showed no inflammatory reaction post implantation and increase in cell matrix formation after 5 and 15 weeks. The combined physical and chemical method of crosslinking promises improved mechanical properties of PVA-GE hydrogel making it a potential scaffold for bone tissue engineering applications. 展开更多
关键词 PVA-Gelatin PVA GELATIN GENIPIN hydrogel Bone Regeneration
下载PDF
Thermal-responsive Photonic Crystals based on Physically Cross-linked Inverse Opal Nanocomposite Hydrogels
8
作者 ZHENG Hang LI Jin +3 位作者 SONG Weizheng HE Guangyao WANG Yifeng CHEN Yanjun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第2期289-296,共8页
A thermal-responsive photonic crystal material was fabricated by forming an inverse opal nanocomposite hydrogel of poly(N-isopropylacrylamide)(IONHPNIPAm)within the interstitial space of a polystyrene photonic crystal... A thermal-responsive photonic crystal material was fabricated by forming an inverse opal nanocomposite hydrogel of poly(N-isopropylacrylamide)(IONHPNIPAm)within the interstitial space of a polystyrene photonic crystal template.In IONHPNIPAm,PNIPAm were physically cross-linked with two kinds of nanoparticles(carbon dots and laponite clays).The integration of carbon dots and laponite clays for physical crosslinking endowed IONHPNIPAm sufficient strength and self-healing property.IONHPNIPAm films can be completely peeled from the substrates to be utilized as an independent photonic crystal material.The structural color and optical diffraction of the IONHPNIPAm exhibits a rapid reversible change in response to external thermal stimuli due to its physical cross-linking feature.Moreover,the IONHPNIPAm shows clear fluorescence due to the introduction of carbon dots,which enables a convenient way for chemical detection(such as the detection of silver ions).This stimuli-responsive photonic crystal materials based on physically cross-linked inverse opal nanocomposite hydrogels with fast response and good mechanical stability are promising for applications in the fields of smart optical detectors,thermal-responsive sensors and chemical detectors. 展开更多
关键词 photonic crystals inverse opal physical cross-linking thermal-responsive nanocomposite hydrogel
下载PDF
Preparation of silver nanoparticles through the reduction of straw-extracted lignin and its antibacterial hydrogel
9
作者 Lou Zhang Shuo Li +4 位作者 Fu Tang Jingkai Zhang Yuetong Kang Hean Zhang Lidong Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期504-514,共11页
Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are... Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are usually toxic and may cause water pollution.In this work,Ag NPs(31.2 nm in diameter)were prepared using the extract of straw,an agricultural waste,as the reducing and stabilizing agent.Experimental analysis revealed that the straw extract contained lignin,the structure of which possesses phenolic hydroxyl and methoxy groups that facilitate the reduction of silver salts into Ag NPs.The surfaces of Ag NPs were negatively charged due to the encapsulation of a thin layer of lignin molecules that prevented their aggregation.After the prepared Ag NPs were added to the precursor solution of acrylamide,free radical polymerization was triggered without the need for extra heating or light irradiation,resulting in the rapid formation of an Ag NP-polyacrylamide composite hydrogel.The inhibition zone test proved that the composite hydrogel possessed excellent antibacterial ability due to the presence of Ag NPs.The prepared hydrogel may have potential applications in the fabrication of biomedical materials,such as antibacterial dressings. 展开更多
关键词 silver nanoparticles hydrogel STRAW extraction ANTIBACTERIAL
下载PDF
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
10
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold Functional surface structure Tissue regeneration BIOMATERIALS
下载PDF
Polymeric biomaterial hydrogels. I. Behavior of some ionotropic cross-linked metal-alginate hydrogels especially copper-alginate membranes in some organic solvents and buffer solutions
11
作者 Refat Hassan Fahd Tirkistani +3 位作者 Ishaq Zaafarany Ahmed Fawzy Mohamed Khairy Sayed Iqbal 《Advances in Bioscience and Biotechnology》 2012年第7期845-854,共10页
The change in rheological and mechanical properties for some ionotropic cross-linked metal-alginate hydrogel complexes in particularly copper-alginate membranes in the presence of some organic solvents (benzene, tolue... The change in rheological and mechanical properties for some ionotropic cross-linked metal-alginate hydrogel complexes in particularly copper-alginate membranes in the presence of some organic solvents (benzene, toluene, xylene, carbon tetrachloride, ace-tone, chloroform, dichloroethane, isobutyl alcohol and ethyl alcohol) or buffer solutions (acetates, borates and universal buffers) have been investigated. The experimental results showed a remarkable tendency of the studied hydrogels for shrinking in polar solvents, whereas no influence was observed for the hydrogels in non-polar solvents. On the other hand, the gels were found to swell or shrink in the buffer solutions depending on the pH of the buffer used. The swelling extent for hydrogel spheres was found to decrease in the order Cu > Ba ≈ Ca > Zn > Pb-alginates in universal buffers of pH = 5.33. The factors affected this behavior have been examined and discussed. 展开更多
关键词 Biomaterials hydrogelS Swelling SHRINKING Metal-Alginates BIOCATALYSTS
下载PDF
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
12
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
下载PDF
Chemical cross-linked hydrogel film leads to integrated flexible supercapacitors with superior performance
13
《Science Foundation in China》 CAS 2016年第1期25-,共1页
With the support by the National Natural Science Foundation of China and the Ministry of Science and Technology of China,the research team led by Prof.Ma YanWei(马衍伟)at the Institute of Electrical Engineering,Chines... With the support by the National Natural Science Foundation of China and the Ministry of Science and Technology of China,the research team led by Prof.Ma YanWei(马衍伟)at the Institute of Electrical Engineering,Chinese Academy of Sciences,cooperated with the research team led by Prof.Wei ZhiXiang(魏志祥)from the National Center for Nanoscience and Technology(China),and reported recently a new pro- 展开更多
关键词 hydrogel 魏志 areal conceptual prototype STRETCHING battery electrolyte electronics capacitance
原文传递
Swelling Behavior of High-Strength Poly(methacrylic acid ) Hydrogels Cross-linked by Chitosan
14
作者 LV Xian-chen 《科技视界》 2018年第6期178-178,260,共2页
In this paper,chitosan was used as a macromolecular cross-linker to prepare high-strength poly(methacrylic acid)hydrogels.The effects of chitosan content and pH on the Swelling Behavior were studied.The swelling rate ... In this paper,chitosan was used as a macromolecular cross-linker to prepare high-strength poly(methacrylic acid)hydrogels.The effects of chitosan content and pH on the Swelling Behavior were studied.The swelling rate and the equilibrium swelling ratio decrease with increase of chitosan.Effect of pH on the equilibrium swelling ratio indicates pH-sensitivity of the hydrogels. 展开更多
关键词 hydrogel CHITOSAN SWELLING performance PH-SENSITIVE
下载PDF
Formation and Collapse of Cellulose Nanocrystals and Hydrophobic Association-induced Dual Cross-linked Nanocomposite Hydrogels: A Rheological Study
15
作者 Xiaorui Jin Mingguo Ma Jun Yang 《Paper And Biomaterials》 CAS 2022年第3期19-29,共11页
The rheological characteristics of a physical gelation system,in which cellulose nanocrystals(CNC_(s))induced the entanglement of poly(acrylic acid)(PAA)chains and partial hydrophobic association of octylphenol polyox... The rheological characteristics of a physical gelation system,in which cellulose nanocrystals(CNC_(s))induced the entanglement of poly(acrylic acid)(PAA)chains and partial hydrophobic association of octylphenol polyoxyethylene acrylate(OP-10-AC)branches in a micellar solution of sodium dodecyl sulfate(SDS),were investigated.The gelation time of the physical gels decreased as the CNC content and number of hydrophobic branch units increased.At the gel point,the storage modulus(G')and loss modulus(G")followed the same frequency dependence(G'≈G"≈ωn),where the hydrophobic moieties attached to the side chains had a significant impact on the values of viscoelastic exponent(n).Beyond the gel point,the initial polymer solution was transformed to a solid-like gel,and the strength of the gel network was governed by associations between both the CNCs and hydrophobic groups.The evolution of the viscoelasticity during the gel-sol transition was monitored,demonstrating that due to a reversible arrangement of the hydrophobic units,a large proportion of physical cross-links dissociated under a thermal trigger and were reversibly reformed when the solution was cooled,while no such partial recovery was observed in the case of the single CNC-induced network systems(with no hydrophobic branches). 展开更多
关键词 hydrogelS cellulose nanocrystals hydrophobic association RHEOLOGY
下载PDF
Analysis of residual crosslinking agent content in UV cross-linked poly(ethylene oxide) hydrogels for dermatological application by gas chromatography 被引量:1
16
作者 Rachel Shet Hui Wong Mark Ashton Kalliopi Dodou 《Journal of Pharmaceutical Analysis》 SCIE CAS 2016年第5期307-312,共6页
Acrylates have been widely used in the synthesis of pharmaceutical polymers. The quantitation of residual acrylate monomers is vital as they are strong irritants and allergens, but after polymerization, are relatively... Acrylates have been widely used in the synthesis of pharmaceutical polymers. The quantitation of residual acrylate monomers is vital as they are strong irritants and allergens, but after polymerization, are relatively inert, causing no irritation and allergies. Poly(ethylene oxide)(PEO) hydrogels were prepared using pentaerythritol tetra-acrylate(PETRA) as UV crosslinking agent. A simple, accurate, and robust quantitation method was developed based on gas chromatographic techniques(GC), which is suitable for routine analysis of residual PETRA monomers in these hydrogels. Unreacted PETRA was initially identified using gas chromatography–mass spectrometry(GC–MS). The quantitation of analyte was performed and validated using gas chromatography equipped with a flame ionization detector(GC–FID). A linear relationship was obtained over the range of 0.0002%–0.0450%(m/m) with a correlation coefficient(r2)greater than 0.99. The recovery( 4 90%), intra-day precision(%RSD o 0.67), inter-day precision(%RSD o2.5%), and robustness(%RSD o1.62%) of the method were within the acceptable values. The limit of detection(LOD) and limit of quantitation(LOQ) were 0.0001%(m/m) and 0.0002%(m/m), respectively.This assay provides a simple and quick way of screening for residual acrylate monomer in hydrogels. 展开更多
关键词 Poly(ethylene oxide) (PEO) RESIDUAL MONOMER hydrogelGas chromatography–mass spectrometry (GC–MS) Gas chromatography–flame ionization detection (GC–FID)
下载PDF
Radiation effects on physically cross-linked agarose hydrogels
17
作者 王潇 敖银勇 +3 位作者 黄玮 刘波 安友 翟茂林 《Nuclear Science and Techniques》 SCIE CAS CSCD 2015年第5期48-52,共5页
As a potential matrix of three-dimensional gel dosimeter, agarose hydrogels will be used for measuring radiation doses, hence the importance of studying their radiation resistance and radiolysis mechanism. Physical pr... As a potential matrix of three-dimensional gel dosimeter, agarose hydrogels will be used for measuring radiation doses, hence the importance of studying their radiation resistance and radiolysis mechanism. Physical property and chemical structure of physically cross-linked agarose hydrogel samples irradiated to 0–200 k Gy by60 Co γ-rays were analyzed by universal testing machine, gel permeation chromatography, fourier transform infrared spectrometer, ultraviolet visible spectroscopy, nuclear magnetic resonance, and gas chromatography. The results showed that agarose hydrogels had good radiation stability below 25 k Gy, and the maximum compression strength of sample was ca. 0.1 MPa at 25 k Gy. The irradiated samples degraded obviously and liquefied gradually with increasing doses. Compared with unirradiated sample, carbonyl groups, which generated from the molecular chains of agarose hydrogels, were observed at 25 k Gy and increased gradually with dose. The main gas products evolved from irradiated agarose hydrogels were H2, CO2, CO and CH4. Based on the analysis of radiolytic products, the radiolysis mechanism of agarose hydrogels under γ-radiation was proposed. 展开更多
关键词 琼脂糖凝胶 辐射效应 物理交联 傅里叶变换红外光谱仪 紫外-可见光谱 凝胶渗透色谱 辐解产物 万能试验机
下载PDF
Study on the Soy Protein-Based Adhesive Cross-Linked by Glyoxal 被引量:6
18
作者 Zhigang Wu Jiankun Liang +3 位作者 Hong Lei Bengang Zhang Xuedong Xi Lifen Li 《Journal of Renewable Materials》 SCIE EI 2021年第2期205-218,共14页
Based on the ESI-MS and ^(13)C-NMR analysis of the forms of glyoxal in acidic and alkaline solutions,the soy-based adhesive cross-linked by glyoxal was prepared in this work.The results showed that glyoxal existed in ... Based on the ESI-MS and ^(13)C-NMR analysis of the forms of glyoxal in acidic and alkaline solutions,the soy-based adhesive cross-linked by glyoxal was prepared in this work.The results showed that glyoxal existed in water in different forms at different pH levels.Under alkaline conditions,glyoxal transformed to glycolate through the intramolecular disproportionation reaction.Under acidic conditions,although some of glyoxal transformed to glycolate as what happened under alkaline conditions,most of glyoxal molecules existed in the form of fiveor six-membered cyclic ether structure.No ethylene tetraol or free aldehyde group was actually detected under these conditions.Although glyoxal reacted with soy protein under both acidic and alkaline conditions,alkaline conditions were more favorable for the improvement of mechanical performance and water resistance of soybased adhesives than acid conditions. 展开更多
关键词 GLYOXAL soy protein-based adhesive cross-link
下载PDF
Applications of Crown Ether Cross-Linked Chitosan for the Analysis of Lead and Cadmium in Environmental Water Samples 被引量:6
19
作者 Tang Yu-rong Zhang Shu-qin +1 位作者 Wang Yu-ting Feng Xue-song 《Wuhan University Journal of Natural Sciences》 CAS 2002年第2期217-221,共5页
A new type of crown ether cross-linked chitosan was synthesized by the reaction of chitosan with 4,4′-dibromodibenzo-18-crown-6 (Br-DBC). Its token structure was analyzed with FT-IR and NMR and the adsorption behavio... A new type of crown ether cross-linked chitosan was synthesized by the reaction of chitosan with 4,4′-dibromodibenzo-18-crown-6 (Br-DBC). Its token structure was analyzed with FT-IR and NMR and the adsorption behaviors for lead and cadmium in environmental water samples by FAAS were studied. In addition the best analysis conditions were discussed and the adsorption mechanism was explained. As the enrichment factor is above 100, both recoveries are 94%–106%, the detection limits of lead and cadmium are 0.5μg·L?1 and 0.04 μg·L?1 and the relatively standard deviations of lead and cadmium are 3.1% and 2.8% respectively, this new method was successfully applied to the determination of environmental water samples. This method is fast and simple and it greatly enhances the determination ability of FAAS for lead and cadmium. 展开更多
关键词 Crown ether cross-linked chitosan lead and cadmium ADSORPTION FAAS
下载PDF
Adsorptive Removal of Copper Ions from Aqueous Solution Using Cross-linked Magnetic Chitosan Beads 被引量:13
20
作者 黄国林 杨婥 +1 位作者 章凯 SHI Jeffrey 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第6期960-966,共7页
The performance of cross-linked magnetic chitosan, coated with magnetic fluids and cross-linked with ePichlorohydrin, was investigated for the adsorption of Copper (Ⅱ) from aqueous solutions. Infrared spectra of ch... The performance of cross-linked magnetic chitosan, coated with magnetic fluids and cross-linked with ePichlorohydrin, was investigated for the adsorption of Copper (Ⅱ) from aqueous solutions. Infrared spectra of chitosan before and after modification showed that the coating and cross-linking are effective. Experiments were performed at different pH of solution and contact time, and appropriate conditions for the adsorption of Cu(Ⅱ) were determined. Experimental equilibrium data were correlated with Langmuir and Freundlich isotherms for determination of the adsorption potential. The results showed that the Langmuir isotherm was better compared with the Freundlich isotherm, and the uptake of Cu(Ⅱ) was 78.13 mg·g^- 1. The kinetics of adsorption corresponded with the first-order Langergren rate equation, and Langergren rate constants were determined. 展开更多
关键词 adsorption of copper (Ⅱ) cross-linked magnetic chitosan Langmuir isotherm Langergren rate equation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部