In this paper, microscopic characteristics of preformed gels (PGs) and secondary cross-linked gels (SCG) with the same concentration were analyzed by atomic force microscopy (AFM). Experimental results indicate ...In this paper, microscopic characteristics of preformed gels (PGs) and secondary cross-linked gels (SCG) with the same concentration were analyzed by atomic force microscopy (AFM). Experimental results indicate that the microstructure of secondary cross-linked gels is a thick 3-D network, in which micro-holes and irregular macro-holes are embedded. The maximum width of the irregular macro-holes is 200 nm. In the SCG two different chemical bonds were formed, which leads to the structural inhomogeneity and the asymmetry of the crosslinking density. The structural inhomogeneity of SCG results in the formation of irregular macro-holes. The excessive cross-linking density is the primary reason for dehydration of SCG and the presence of irregular macro-holes in SCG can facilitate dehydration.展开更多
Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfie...Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices.展开更多
We fabricated dye-sensitized solar cells with non-cross-linked fluorinated gel electrolyte. The application of fluorinated gel to electrolyte is a challenging issue at present. The gelation of the electrolyte is of im...We fabricated dye-sensitized solar cells with non-cross-linked fluorinated gel electrolyte. The application of fluorinated gel to electrolyte is a challenging issue at present. The gelation of the electrolyte is of importance in order to solve the problem in the durability of the cell. We investigated, in this article, the effect of Pt deposition on the anode of the cell. The Pt was deposited by means of a DC sputtering technique. The studies showed that the deposition time strongly affected both open voltage and short-circuit current of the cell. The adaptive thickness of the Pt layer was determined to be 10 nm for the non-cross-linked fluorinated gel electrolyte cells.展开更多
In this study, we developed a fast, simple and novel process to fabricate cross-linked electro-spun gelatin with limited amounts of glutaraldehyde (GA) using trifluoroacetic acid (TFA) as the solvent. Using SEM, the u...In this study, we developed a fast, simple and novel process to fabricate cross-linked electro-spun gelatin with limited amounts of glutaraldehyde (GA) using trifluoroacetic acid (TFA) as the solvent. Using SEM, the uncross-linked gelatin fibers were determined to have diameters between 50-300 nm, while the cross-linked gelatin electro-spun fibers had diameters between 100-500 nm. FT-IR revealed that the un-cross-linked and cross-linked electro-spun gelatin was fabricated successfully by electro-spinning using TFA as a solvent, which has not been reported until now. Stress-strain curves showed that the addition of small amounts of GA increased the strength of the gelatin by two fold and allowed for the creation of a water insoluble gelatin electro-spun membrane.展开更多
Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked pol...Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked polymers have the potential to further improve the mechanical property without trading off Li-ion conductivity.In this study,focusing on a recently developed cross-linked SPE,i.e.,the one based on poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network(PVCN),we used solid-state nuclear magnetic resonance(NMR)techniques to investigate the fundamental interaction between the chain segments and Li ions,as well as the lithium-ion motion.By utilizing homonuclear/heteronuclear correlation,CP(cross-polarization)kinetics,and spin-lattice relaxation experiments,etc.,we revealed the structural characteristics and their relations to lithium-ion mobilities.It is found that the network formation prevents poly(ethylene oxide)chains from crystallization,which could create sufficient space for segmental tumbling and Li-ion co nductio n.As such,the mechanical property is greatly improved with even higher Li-ion mobilities compared to the poly(vinylene carbonate)or poly(ethylene oxide)based SPE analogues.展开更多
High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)M...High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.展开更多
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ...Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.展开更多
Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage.However,the uncontrollable side-reaction and lithium...Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage.However,the uncontrollable side-reaction and lithium dendrite growth lead to the limited serving life and hinder the practical application of lithium metal batteries.Here,a tri-monomer copolymerized gel polymer electrolyte(TGPE)with a cross-linked reticulation structure was prepared by introducing a cross-linker(polyurethane group)into the acrylate-based in situ polymerization system.The soft segment of polyurethane in TGPE enables the far migration of lithium ions,and the-NH forms hydrogen bonds in the hard segment to build a stable cross-linked framework.This system hinders anion migration and leads to a high Li^(+)migration number(t_(Li^(+))=0.65),which achieves uniform lithium deposition and effectively inhibits lithium dendrite growth.As a result,the assembled symmetric cell shows robust reversibility over 5500 h at a current density of 1 mA cm^(-2).The LFP∷TGPE∷Li cell has a capacity retention of 89.8%after cycling 800 times at a rate of 1C.In summary,in situ polymerization of TGPE electrolytes is expected to be a candidate material for high-energy-density lithium metal batteries.展开更多
The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious int...The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode.展开更多
The effects of different cation concentrations and types on rheological property and stability of Guar, Xanthan, and Partially Hydrolyzed Polyacrylamide(HPAM) cross-linked gels were analyzed through experiments. Also,...The effects of different cation concentrations and types on rheological property and stability of Guar, Xanthan, and Partially Hydrolyzed Polyacrylamide(HPAM) cross-linked gels were analyzed through experiments. Also, a new approach was developed to reduce the negative effects of cation by application of multi-walled carbon nano-tubes(MWCNTs). The presence of cations in cross-linked gel system will reduce the viscosity of gel, the higher the cation concentration is, the lower the viscosity will be. The bivalent cation has a greater viscosity reduction effect on gel than monovalent cation. The stability of cross-linked gels is worse with cations, this situation becomes more serious under higher salinity. MWCNTs were added to HPAM gel, cross-linked by(3-Aminopropyl) triethoxysilane(APTES), they surrounded cations and removed them from polymers and reduced the reaction possibility. This method enhances the viscosity and breakdown pressure of cross-linked gels, improves the stability of HPAM cross-linked gel under different operating conditions, and can be applied to related drilling projects.展开更多
Swelling properties of chitosan-gelatin films cross-linked by sulfate were investigated. Sulfate cross-linked chitosan-gelatin films (SCG) were prepared simply by dipping chitosan-gelatin films into sodium sulfate sol...Swelling properties of chitosan-gelatin films cross-linked by sulfate were investigated. Sulfate cross-linked chitosan-gelatin films (SCG) were prepared simply by dipping chitosan-gelatin films into sodium sulfate solution. The swelling behavior of SCG was investigated as a function of pH and ionic strength. Under acidic conditions pH less than 4, SCG swelled less than 120%, while under the conditions pH larger than 7.4, SCG swelled very significantly, the swelling ratio was over 350%. Sodium chloride weakened the electrostatic interaction between sulfate and amine ions of chitosan and gelatin, therefore facilitated the film swelling. The swelling ratio increased with increasing sodium chloride concentration, the SCG dissociated in the sodium chloride concentration of 0.20 mol·L?1. The parameters of film preparation such as sulfate concentration, dipping time, sulfate solution pH, influenced the film swelling behavior. The lower concentration and the higher pH of sulfate solution resulted in a larger swelling ratio. Key words chitosan - gelatin - sulfate cross-linking - swelling CLC number O 636.1 Foundation item: Supported by the National Natural Science Foundation of China (29977014)Biography: Xiao Ling (1964-), female, Associate professor, research direction, biopolymers.展开更多
A thermal-responsive photonic crystal material was fabricated by forming an inverse opal nanocomposite hydrogel of poly(N-isopropylacrylamide)(IONHPNIPAm)within the interstitial space of a polystyrene photonic crystal...A thermal-responsive photonic crystal material was fabricated by forming an inverse opal nanocomposite hydrogel of poly(N-isopropylacrylamide)(IONHPNIPAm)within the interstitial space of a polystyrene photonic crystal template.In IONHPNIPAm,PNIPAm were physically cross-linked with two kinds of nanoparticles(carbon dots and laponite clays).The integration of carbon dots and laponite clays for physical crosslinking endowed IONHPNIPAm sufficient strength and self-healing property.IONHPNIPAm films can be completely peeled from the substrates to be utilized as an independent photonic crystal material.The structural color and optical diffraction of the IONHPNIPAm exhibits a rapid reversible change in response to external thermal stimuli due to its physical cross-linking feature.Moreover,the IONHPNIPAm shows clear fluorescence due to the introduction of carbon dots,which enables a convenient way for chemical detection(such as the detection of silver ions).This stimuli-responsive photonic crystal materials based on physically cross-linked inverse opal nanocomposite hydrogels with fast response and good mechanical stability are promising for applications in the fields of smart optical detectors,thermal-responsive sensors and chemical detectors.展开更多
The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate ne...The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.展开更多
The procedure for preparing a new type of uniform and porous chitosan gel from citric acid medium is described. Its swelling behavior in different media was compared with those of the gels prepared by other methods. T...The procedure for preparing a new type of uniform and porous chitosan gel from citric acid medium is described. Its swelling behavior in different media was compared with those of the gels prepared by other methods. The ultrastructure of the xerogel prepared from citric acid was characterized using electron microscopy (SEM).展开更多
Based on the ESI-MS and ^(13)C-NMR analysis of the forms of glyoxal in acidic and alkaline solutions,the soy-based adhesive cross-linked by glyoxal was prepared in this work.The results showed that glyoxal existed in ...Based on the ESI-MS and ^(13)C-NMR analysis of the forms of glyoxal in acidic and alkaline solutions,the soy-based adhesive cross-linked by glyoxal was prepared in this work.The results showed that glyoxal existed in water in different forms at different pH levels.Under alkaline conditions,glyoxal transformed to glycolate through the intramolecular disproportionation reaction.Under acidic conditions,although some of glyoxal transformed to glycolate as what happened under alkaline conditions,most of glyoxal molecules existed in the form of fiveor six-membered cyclic ether structure.No ethylene tetraol or free aldehyde group was actually detected under these conditions.Although glyoxal reacted with soy protein under both acidic and alkaline conditions,alkaline conditions were more favorable for the improvement of mechanical performance and water resistance of soybased adhesives than acid conditions.展开更多
A new type of crown ether cross-linked chitosan was synthesized by the reaction of chitosan with 4,4′-dibromodibenzo-18-crown-6 (Br-DBC). Its token structure was analyzed with FT-IR and NMR and the adsorption behavio...A new type of crown ether cross-linked chitosan was synthesized by the reaction of chitosan with 4,4′-dibromodibenzo-18-crown-6 (Br-DBC). Its token structure was analyzed with FT-IR and NMR and the adsorption behaviors for lead and cadmium in environmental water samples by FAAS were studied. In addition the best analysis conditions were discussed and the adsorption mechanism was explained. As the enrichment factor is above 100, both recoveries are 94%–106%, the detection limits of lead and cadmium are 0.5μg·L?1 and 0.04 μg·L?1 and the relatively standard deviations of lead and cadmium are 3.1% and 2.8% respectively, this new method was successfully applied to the determination of environmental water samples. This method is fast and simple and it greatly enhances the determination ability of FAAS for lead and cadmium.展开更多
The performance of cross-linked magnetic chitosan, coated with magnetic fluids and cross-linked with ePichlorohydrin, was investigated for the adsorption of Copper (Ⅱ) from aqueous solutions. Infrared spectra of ch...The performance of cross-linked magnetic chitosan, coated with magnetic fluids and cross-linked with ePichlorohydrin, was investigated for the adsorption of Copper (Ⅱ) from aqueous solutions. Infrared spectra of chitosan before and after modification showed that the coating and cross-linking are effective. Experiments were performed at different pH of solution and contact time, and appropriate conditions for the adsorption of Cu(Ⅱ) were determined. Experimental equilibrium data were correlated with Langmuir and Freundlich isotherms for determination of the adsorption potential. The results showed that the Langmuir isotherm was better compared with the Freundlich isotherm, and the uptake of Cu(Ⅱ) was 78.13 mg·g^- 1. The kinetics of adsorption corresponded with the first-order Langergren rate equation, and Langergren rate constants were determined.展开更多
The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achi...The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achieving simultaneously defect passivation and grain protection from moisture is crucial for the viability of perovskite solar cells.Here,an in situ cross-linked grain encapsulation(CLGE)strategy that improves both device stability and defect passivation is reported.Cross-linkable semiconducting small molecules are mixed into the antisolvent to uniformly form a compact and conducting cross-linked layer over the grain surfaces.This cross-linked coating layer not only passivates trap states and facilitates hole extraction,but also enhances the device stability by preventing moisture diffusion.Using the CLGE strategy,a high power conversion efficiency(PCE)of 22.7%is obtained in 1.55-eV bandgap planar perovskite solar cells.The unencapsulated devices with CLGE exhibit significantly enhanced device stability again moisture and maintain>90%of their initial PCE after shelf storage under ambient condition for over10,000 h.展开更多
Performance characteristics of partially hydrolyzed polyacrylamide (HPAM) and cross- linked polymer (CLP, Cr^3+ as the cross linker) solutions have been investigated. A Brookfield viscometer, rheometer, dynamic l...Performance characteristics of partially hydrolyzed polyacrylamide (HPAM) and cross- linked polymer (CLP, Cr^3+ as the cross linker) solutions have been investigated. A Brookfield viscometer, rheometer, dynamic light scattering system, and core flow device have been used to measure the viscosity, viscoelasticity, polymer coil dimensions, molecular configuration, flow characteristics, and profile modification. The results show that, under conditions of high salinity and low HPAM and Cr^3+ concentrations, cross-linking mainly occurred between different chains of the same HPAM molecule in the presence of Cr^3+, and a cross-linked polymer (CLP) system with a local network structure was formed. Compared with an HPAM solution of the same concentration, the apparent viscosity of the CLP solution increased slightly or remained almost unchanged, but its viscoelasticity (namely storage modulus, loss modulus, and first normal stress difference) increased, and the resistance coefficient and residual resistance coefficient increased significantly. This indicates that the CLP solution exhibits a strong capability to divert the sequentially injected polymer flood from high-permeability zones to low- permeability zones in a reservoir. Under the same HPAM concentration conditions, the dimensions of polymer coils in the CLP solution increased slightly compared with the dimensions of polymer coils in HPAM solution, which were smaller than the rock pores, indicating that the cross-linked polymer solution was well adapted to reservoir rocks. Core flood experiments show that at the same cost of reagent, the oil recovery by CLP injection (HPAM-1, Cr^3+ as the cross linker) is 3.1% to 5.2% higher than that by HPAM- 2 injection.展开更多
Large-scale and low-cost preparation of carbon-based potassium anode with long life and high capacity is one of the footstones for the development of potassium ion batteries(PIBs).Herein,a low-cost carbon-based materi...Large-scale and low-cost preparation of carbon-based potassium anode with long life and high capacity is one of the footstones for the development of potassium ion batteries(PIBs).Herein,a low-cost carbon-based material,cross-linked hollow graphitic carbon(HGC),is large scale synthesized to apply for PIBs anode.Its hollow structure can afford sufficient space to overcome the damage caused by the volume expansion of graphitic carbon(GC).While the cross-linked structure forms a compact interconnection network that allows electrons to rapid transfer between different GC frameworks.Electrochemical measurements demonstrated that the HGC anode exhibited low charge/discharge plateau(about 0.25 V and 0.1 V)and excellent specific capacity as high as 298 m A h g^(-1)at the current density of 50 m A g^(-1).And more important,after 200 cycles the capacity of HGC anode still shows 269 m A h g^(-1)(the decay rate of per cycle is only 0.048%).Meanwhile,the use of commercial traditional electrolyte(KPF_(6))and cheap raw materials that provide new hope for trying and realizing the large-scale production of PIBs based on carbon anode materials.展开更多
文摘In this paper, microscopic characteristics of preformed gels (PGs) and secondary cross-linked gels (SCG) with the same concentration were analyzed by atomic force microscopy (AFM). Experimental results indicate that the microstructure of secondary cross-linked gels is a thick 3-D network, in which micro-holes and irregular macro-holes are embedded. The maximum width of the irregular macro-holes is 200 nm. In the SCG two different chemical bonds were formed, which leads to the structural inhomogeneity and the asymmetry of the crosslinking density. The structural inhomogeneity of SCG results in the formation of irregular macro-holes. The excessive cross-linking density is the primary reason for dehydration of SCG and the presence of irregular macro-holes in SCG can facilitate dehydration.
基金funding supports from the Natural Science Basis Research Plan in Shaanxi Province of China(2019JLZ-10)the Independent Research Project of National Key Laboratory of Electrical Insulation and Power Equipment(EIPE19111)。
文摘Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices.
文摘We fabricated dye-sensitized solar cells with non-cross-linked fluorinated gel electrolyte. The application of fluorinated gel to electrolyte is a challenging issue at present. The gelation of the electrolyte is of importance in order to solve the problem in the durability of the cell. We investigated, in this article, the effect of Pt deposition on the anode of the cell. The Pt was deposited by means of a DC sputtering technique. The studies showed that the deposition time strongly affected both open voltage and short-circuit current of the cell. The adaptive thickness of the Pt layer was determined to be 10 nm for the non-cross-linked fluorinated gel electrolyte cells.
文摘In this study, we developed a fast, simple and novel process to fabricate cross-linked electro-spun gelatin with limited amounts of glutaraldehyde (GA) using trifluoroacetic acid (TFA) as the solvent. Using SEM, the uncross-linked gelatin fibers were determined to have diameters between 50-300 nm, while the cross-linked gelatin electro-spun fibers had diameters between 100-500 nm. FT-IR revealed that the un-cross-linked and cross-linked electro-spun gelatin was fabricated successfully by electro-spinning using TFA as a solvent, which has not been reported until now. Stress-strain curves showed that the addition of small amounts of GA increased the strength of the gelatin by two fold and allowed for the creation of a water insoluble gelatin electro-spun membrane.
基金financially supported by the National Natural Science Foundation of China(Grant No.22325405,22321002,22279153)Liaoning Revitalization Talents Program(XLYC1807207,XLYC2203134)DICP I202104。
文摘Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked polymers have the potential to further improve the mechanical property without trading off Li-ion conductivity.In this study,focusing on a recently developed cross-linked SPE,i.e.,the one based on poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network(PVCN),we used solid-state nuclear magnetic resonance(NMR)techniques to investigate the fundamental interaction between the chain segments and Li ions,as well as the lithium-ion motion.By utilizing homonuclear/heteronuclear correlation,CP(cross-polarization)kinetics,and spin-lattice relaxation experiments,etc.,we revealed the structural characteristics and their relations to lithium-ion mobilities.It is found that the network formation prevents poly(ethylene oxide)chains from crystallization,which could create sufficient space for segmental tumbling and Li-ion co nductio n.As such,the mechanical property is greatly improved with even higher Li-ion mobilities compared to the poly(vinylene carbonate)or poly(ethylene oxide)based SPE analogues.
基金supported by the National Natural Science Foundation of China(52162030)the Yunnan Major Scientific and Technological Projects(202202AG050003)+4 种基金the Key Research and Development Program of Yunnan Province(202103AA080019)the Scientific Research Foundation of Kunming University of Science and Technology(20220122)the Graduate Student Top Innovative Talent Program of Kunming University of Science and Technology(CA23107M139A)the Analysis and Testing Foundation of Kunming University of Science and Technology(2023T20220122)the Shenzhen Science and Technology Program(KCXST20221021111201003)。
文摘High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.
基金supported by the National Key Research and Development Program of China(2022YFB4101800)National Natural Science Foundation of China(22278077,22108040)+2 种基金Key Program of Qingyuan Innovation Laboratory(00221004)Research Program of Qingyuan Innovation Laboratory(00523006)Natural Science Foundation of Fujian Province(2022J02019)。
文摘Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.
基金support from the National Natural Science Foundation of China(52077096)
文摘Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage.However,the uncontrollable side-reaction and lithium dendrite growth lead to the limited serving life and hinder the practical application of lithium metal batteries.Here,a tri-monomer copolymerized gel polymer electrolyte(TGPE)with a cross-linked reticulation structure was prepared by introducing a cross-linker(polyurethane group)into the acrylate-based in situ polymerization system.The soft segment of polyurethane in TGPE enables the far migration of lithium ions,and the-NH forms hydrogen bonds in the hard segment to build a stable cross-linked framework.This system hinders anion migration and leads to a high Li^(+)migration number(t_(Li^(+))=0.65),which achieves uniform lithium deposition and effectively inhibits lithium dendrite growth.As a result,the assembled symmetric cell shows robust reversibility over 5500 h at a current density of 1 mA cm^(-2).The LFP∷TGPE∷Li cell has a capacity retention of 89.8%after cycling 800 times at a rate of 1C.In summary,in situ polymerization of TGPE electrolytes is expected to be a candidate material for high-energy-density lithium metal batteries.
基金supported by the National Natural Science Foundation of China(Nos.52172214,52272221,52171182)the Postdoctoral Innovation Project of Shandong Province(No.202102003)+2 种基金The Key Research and Development Program of Shandong Province(2021ZLGX01)the Qilu Young Scholar ProgramHPC Cloud Platform of Shandong University are also thanked.
文摘The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode.
文摘The effects of different cation concentrations and types on rheological property and stability of Guar, Xanthan, and Partially Hydrolyzed Polyacrylamide(HPAM) cross-linked gels were analyzed through experiments. Also, a new approach was developed to reduce the negative effects of cation by application of multi-walled carbon nano-tubes(MWCNTs). The presence of cations in cross-linked gel system will reduce the viscosity of gel, the higher the cation concentration is, the lower the viscosity will be. The bivalent cation has a greater viscosity reduction effect on gel than monovalent cation. The stability of cross-linked gels is worse with cations, this situation becomes more serious under higher salinity. MWCNTs were added to HPAM gel, cross-linked by(3-Aminopropyl) triethoxysilane(APTES), they surrounded cations and removed them from polymers and reduced the reaction possibility. This method enhances the viscosity and breakdown pressure of cross-linked gels, improves the stability of HPAM cross-linked gel under different operating conditions, and can be applied to related drilling projects.
文摘Swelling properties of chitosan-gelatin films cross-linked by sulfate were investigated. Sulfate cross-linked chitosan-gelatin films (SCG) were prepared simply by dipping chitosan-gelatin films into sodium sulfate solution. The swelling behavior of SCG was investigated as a function of pH and ionic strength. Under acidic conditions pH less than 4, SCG swelled less than 120%, while under the conditions pH larger than 7.4, SCG swelled very significantly, the swelling ratio was over 350%. Sodium chloride weakened the electrostatic interaction between sulfate and amine ions of chitosan and gelatin, therefore facilitated the film swelling. The swelling ratio increased with increasing sodium chloride concentration, the SCG dissociated in the sodium chloride concentration of 0.20 mol·L?1. The parameters of film preparation such as sulfate concentration, dipping time, sulfate solution pH, influenced the film swelling behavior. The lower concentration and the higher pH of sulfate solution resulted in a larger swelling ratio. Key words chitosan - gelatin - sulfate cross-linking - swelling CLC number O 636.1 Foundation item: Supported by the National Natural Science Foundation of China (29977014)Biography: Xiao Ling (1964-), female, Associate professor, research direction, biopolymers.
基金Funded by the National Natural Science Foundation of China(No.51873167)the National Innovation and Entrepreneurship Training Program for College Students(No.S202010497024)。
文摘A thermal-responsive photonic crystal material was fabricated by forming an inverse opal nanocomposite hydrogel of poly(N-isopropylacrylamide)(IONHPNIPAm)within the interstitial space of a polystyrene photonic crystal template.In IONHPNIPAm,PNIPAm were physically cross-linked with two kinds of nanoparticles(carbon dots and laponite clays).The integration of carbon dots and laponite clays for physical crosslinking endowed IONHPNIPAm sufficient strength and self-healing property.IONHPNIPAm films can be completely peeled from the substrates to be utilized as an independent photonic crystal material.The structural color and optical diffraction of the IONHPNIPAm exhibits a rapid reversible change in response to external thermal stimuli due to its physical cross-linking feature.Moreover,the IONHPNIPAm shows clear fluorescence due to the introduction of carbon dots,which enables a convenient way for chemical detection(such as the detection of silver ions).This stimuli-responsive photonic crystal materials based on physically cross-linked inverse opal nanocomposite hydrogels with fast response and good mechanical stability are promising for applications in the fields of smart optical detectors,thermal-responsive sensors and chemical detectors.
基金supported by the National Natural Science Foundation of China,Nos.82272171(to ZY),82271403(to XL),81941011(to XL),31971279(to ZY),31730030(to XL)the Natural Science Foundation of Beijing,No.7222004(to HD).
文摘The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.
基金Sponsored by a Girant-in-Aid from the Ministry of Education of China.
文摘The procedure for preparing a new type of uniform and porous chitosan gel from citric acid medium is described. Its swelling behavior in different media was compared with those of the gels prepared by other methods. The ultrastructure of the xerogel prepared from citric acid was characterized using electron microscopy (SEM).
基金This work was supported by Science-technology Support Foundation of Guizhou Province of China(Nos.[2019]2325 and [2020]1Y125)the Growth Project of Young Scientific and Technological Talents in Colleges and Universities of Guizhou Province(No.[2019]184)+1 种基金Yunnan Fundamental Research Key Projects(No.2019FA012)National Natural Science Foundation of China(Nos.31870546 and 31800481).
文摘Based on the ESI-MS and ^(13)C-NMR analysis of the forms of glyoxal in acidic and alkaline solutions,the soy-based adhesive cross-linked by glyoxal was prepared in this work.The results showed that glyoxal existed in water in different forms at different pH levels.Under alkaline conditions,glyoxal transformed to glycolate through the intramolecular disproportionation reaction.Under acidic conditions,although some of glyoxal transformed to glycolate as what happened under alkaline conditions,most of glyoxal molecules existed in the form of fiveor six-membered cyclic ether structure.No ethylene tetraol or free aldehyde group was actually detected under these conditions.Although glyoxal reacted with soy protein under both acidic and alkaline conditions,alkaline conditions were more favorable for the improvement of mechanical performance and water resistance of soybased adhesives than acid conditions.
文摘A new type of crown ether cross-linked chitosan was synthesized by the reaction of chitosan with 4,4′-dibromodibenzo-18-crown-6 (Br-DBC). Its token structure was analyzed with FT-IR and NMR and the adsorption behaviors for lead and cadmium in environmental water samples by FAAS were studied. In addition the best analysis conditions were discussed and the adsorption mechanism was explained. As the enrichment factor is above 100, both recoveries are 94%–106%, the detection limits of lead and cadmium are 0.5μg·L?1 and 0.04 μg·L?1 and the relatively standard deviations of lead and cadmium are 3.1% and 2.8% respectively, this new method was successfully applied to the determination of environmental water samples. This method is fast and simple and it greatly enhances the determination ability of FAAS for lead and cadmium.
文摘The performance of cross-linked magnetic chitosan, coated with magnetic fluids and cross-linked with ePichlorohydrin, was investigated for the adsorption of Copper (Ⅱ) from aqueous solutions. Infrared spectra of chitosan before and after modification showed that the coating and cross-linking are effective. Experiments were performed at different pH of solution and contact time, and appropriate conditions for the adsorption of Cu(Ⅱ) were determined. Experimental equilibrium data were correlated with Langmuir and Freundlich isotherms for determination of the adsorption potential. The results showed that the Langmuir isotherm was better compared with the Freundlich isotherm, and the uptake of Cu(Ⅱ) was 78.13 mg·g^- 1. The kinetics of adsorption corresponded with the first-order Langergren rate equation, and Langergren rate constants were determined.
基金financially supported by the National Key R&D Program of China(2018YFB1500102,2018YFB2200101)the National Natural Science Foundation of China(61974063,61921005)+3 种基金Natural Science Foundation of Jiangsu Province(BK20190315)the Fundamental Research Funds for the Central Universities(14380168)the Thousand Talent Program for Young Outstanding Scientists in ChinaProgram for Innovative Talents and Entrepreneur in Jiangsu。
文摘The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achieving simultaneously defect passivation and grain protection from moisture is crucial for the viability of perovskite solar cells.Here,an in situ cross-linked grain encapsulation(CLGE)strategy that improves both device stability and defect passivation is reported.Cross-linkable semiconducting small molecules are mixed into the antisolvent to uniformly form a compact and conducting cross-linked layer over the grain surfaces.This cross-linked coating layer not only passivates trap states and facilitates hole extraction,but also enhances the device stability by preventing moisture diffusion.Using the CLGE strategy,a high power conversion efficiency(PCE)of 22.7%is obtained in 1.55-eV bandgap planar perovskite solar cells.The unencapsulated devices with CLGE exhibit significantly enhanced device stability again moisture and maintain>90%of their initial PCE after shelf storage under ambient condition for over10,000 h.
基金financial support from the National Key Technology R&D Program in the 12th Five Year Plan of PetroChina (No: 2011ZX05010-003-02)the National Key Technology R&D Program in the 12th Five Year Plan of CNOOC (No: 2011ZX05024-04-05-03)
文摘Performance characteristics of partially hydrolyzed polyacrylamide (HPAM) and cross- linked polymer (CLP, Cr^3+ as the cross linker) solutions have been investigated. A Brookfield viscometer, rheometer, dynamic light scattering system, and core flow device have been used to measure the viscosity, viscoelasticity, polymer coil dimensions, molecular configuration, flow characteristics, and profile modification. The results show that, under conditions of high salinity and low HPAM and Cr^3+ concentrations, cross-linking mainly occurred between different chains of the same HPAM molecule in the presence of Cr^3+, and a cross-linked polymer (CLP) system with a local network structure was formed. Compared with an HPAM solution of the same concentration, the apparent viscosity of the CLP solution increased slightly or remained almost unchanged, but its viscoelasticity (namely storage modulus, loss modulus, and first normal stress difference) increased, and the resistance coefficient and residual resistance coefficient increased significantly. This indicates that the CLP solution exhibits a strong capability to divert the sequentially injected polymer flood from high-permeability zones to low- permeability zones in a reservoir. Under the same HPAM concentration conditions, the dimensions of polymer coils in the CLP solution increased slightly compared with the dimensions of polymer coils in HPAM solution, which were smaller than the rock pores, indicating that the cross-linked polymer solution was well adapted to reservoir rocks. Core flood experiments show that at the same cost of reagent, the oil recovery by CLP injection (HPAM-1, Cr^3+ as the cross linker) is 3.1% to 5.2% higher than that by HPAM- 2 injection.
基金financially supported by National Natural Science Foundation of China(Nos.51922038 and 51672078)Hunan Outstanding Youth Talents(No.2019JJ20005)
文摘Large-scale and low-cost preparation of carbon-based potassium anode with long life and high capacity is one of the footstones for the development of potassium ion batteries(PIBs).Herein,a low-cost carbon-based material,cross-linked hollow graphitic carbon(HGC),is large scale synthesized to apply for PIBs anode.Its hollow structure can afford sufficient space to overcome the damage caused by the volume expansion of graphitic carbon(GC).While the cross-linked structure forms a compact interconnection network that allows electrons to rapid transfer between different GC frameworks.Electrochemical measurements demonstrated that the HGC anode exhibited low charge/discharge plateau(about 0.25 V and 0.1 V)and excellent specific capacity as high as 298 m A h g^(-1)at the current density of 50 m A g^(-1).And more important,after 200 cycles the capacity of HGC anode still shows 269 m A h g^(-1)(the decay rate of per cycle is only 0.048%).Meanwhile,the use of commercial traditional electrolyte(KPF_(6))and cheap raw materials that provide new hope for trying and realizing the large-scale production of PIBs based on carbon anode materials.