期刊文献+
共找到10,088篇文章
< 1 2 250 >
每页显示 20 50 100
High drug loading hydrophobic cross-linked dextran microspheres as novel drug delivery systems for the treatment of osteoarthritis
1
作者 Zhimin Li Xianjing Feng +8 位作者 Shixing Luo Yanfeng Ding Zhi Zhang Yifeng Shang Doudou Lei Jinhong Cai Jinmin Zhao Li Zheng Ming Gao 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第4期109-123,共15页
Drug delivery via intra-articular(IA)injection has proved to be effective in osteoarthritis(OA)therapy,limited by the drug efficiency and short retention time of the drug delivery systems(DDSs).Herein,a series of modi... Drug delivery via intra-articular(IA)injection has proved to be effective in osteoarthritis(OA)therapy,limited by the drug efficiency and short retention time of the drug delivery systems(DDSs).Herein,a series of modified cross-linked dextran(Sephadex,S0)was fabricated by respectively grafting with linear alkyl chains,branched alkyl chains or aromatic chain,and acted as DDSs after ibuprofen(Ibu)loading for OA therapy.This DDSs expressed sustained drug release,excellent anti-inflammatory and chondroprotective effects both in IL-1βinduced chondrocytes and OA joints.Specifically,the introduction of a longer hydrophobic chain,particularly an aromatic chain,distinctly improved the hydrophobicity of S0,increased Ibu loading efficiency,and further led to significantly improving OA therapeutic effects.Therefore,hydrophobic microspheres with greatly improved drug loading ratio and prolonged degradation rates show great potential to act as DDSs for OA therapy. 展开更多
关键词 Sephadex microsphere Hydrophobic modification Drug delivery system High drug loading ratio OSTEOARTHRITIS
下载PDF
Mechanism of high Li-ion conductivity in poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network based electrolyte revealed by solid-state NMR
2
作者 Fan Li Tiantian Dong +5 位作者 Yi Ji Lixin Liang Kuizhi Chen Huanrui Zhang Guanglei Cui Guangjin Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期377-383,I0010,共8页
Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked pol... Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked polymers have the potential to further improve the mechanical property without trading off Li-ion conductivity.In this study,focusing on a recently developed cross-linked SPE,i.e.,the one based on poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network(PVCN),we used solid-state nuclear magnetic resonance(NMR)techniques to investigate the fundamental interaction between the chain segments and Li ions,as well as the lithium-ion motion.By utilizing homonuclear/heteronuclear correlation,CP(cross-polarization)kinetics,and spin-lattice relaxation experiments,etc.,we revealed the structural characteristics and their relations to lithium-ion mobilities.It is found that the network formation prevents poly(ethylene oxide)chains from crystallization,which could create sufficient space for segmental tumbling and Li-ion co nductio n.As such,the mechanical property is greatly improved with even higher Li-ion mobilities compared to the poly(vinylene carbonate)or poly(ethylene oxide)based SPE analogues. 展开更多
关键词 ssNMR Lithium-ion mobility cross-link Solid polymer electrolyte
下载PDF
One-pot Synthesis of Hierarchical Flower-like WS_(2) Microspheres as Anode Materials for Lithium-ion Batteries
3
作者 张向华 TAN Hen +1 位作者 WANG Ze XUE Maoquan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期1-6,共6页
3D hierarchical flowerlike WS_(2) microspheres were synthesized through a facile one-pot hydrothermal route.The as-synthesized samples were characterized by powder X-ray powder diffraction (XRD),energy-dispersive spec... 3D hierarchical flowerlike WS_(2) microspheres were synthesized through a facile one-pot hydrothermal route.The as-synthesized samples were characterized by powder X-ray powder diffraction (XRD),energy-dispersive spectroscopy (EDS),scanning electron microscopy (SEM) and Raman.SEM images of the samples reveal that the hierarchical flowerlike WS_(2) microspheres with diameters of about 3-5μm are composed of a number of curled nanosheets.Electrochemical tests such as charge/discharge,cyclic voltammetry,cycle life and rate performance were carried out on the WS_(2) sample.As an anode material for lithium-ion batteries,hierarchical flowerlike WS_(2) microspheres show excellent electrochemical performance.At a current density of100 mA·g^(-1),a high specific capacity of 647.8 mA·h·g^(-1) was achieved after 120 discharge/charge cycles.The excellent electrochemical performance of WS_(2) as an anode material for lithium-ion batteries can be attributed to its special 3D hierarchical structure. 展开更多
关键词 WS_(2) microspheres lithium-ion batteries electrochemical performance
下载PDF
Residual alkali-evoked cross-linked polymer layer for anti-air-sensitivity LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)cathode
4
作者 Chao Zhao Xuebao Li +7 位作者 Yun Zhao Jingjing He Yuanpeng Cao Wei Luo Ding Wang Jianguo Duan Xianshu Wang Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期450-458,共9页
High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)M... High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs. 展开更多
关键词 Lithium-ion batteries Nickel-rich layered cathode Residual alkalis cross-linked polyme rmodification Airsensitivity
下载PDF
Superhydrophobic Surface-Assisted Preparation of Microspheres and Supraparticles and Their Applications
5
作者 Mengyao Pan Huijuan Shao +11 位作者 Yue Fan Jinlong Yang Jiaxin Liu Zhongqian Deng Zhenda Liu Zhidi Chen Jun Zhang Kangfeng Yi Yucai Su Dehui Wang Xu Deng Fei Deng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期110-138,共29页
Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them... Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhesion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics make SHS suitable for a wide range of applications. One particularly promising application is the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as a universal platform capable of providing customized services for a variety of microspheres and supraparticles. In this review, an overview of the strategies for fabricating microspheres and supraparticles with the aid of SHS, including cross-linking process, polymer melting,and droplet template evaporation methods, is first presented. Then, the applications of microspheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating photonic devices with controllable structures and tunable structural colors, acting as catalysts with emerging or synergetic properties, being integrated into the biomedical field to construct the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally,the perspective on future developments involved with this research field is given, along with some obstacles and opportunities. 展开更多
关键词 Superhydrophobic surface microspheres and supraparticles Photonic devices CATALYSTS Biomedical and trace detections
下载PDF
Tissue Regeneration in Infected Wounds of Albino Rats Using Ciprofloxacin-Loaded Gelatin Microspheres Incorporated Collagen Scaffold: A Histological Approach with H&E Staining
6
作者 Kirubanandan Shanmugam 《Journal of Clinical and Nursing Research》 2024年第5期156-168,共13页
A wound care system consisting of ciprofloxacin-loaded gelatin microspheres impregnated in a macroporous collagen scaffold was created to effectively control wound infection and regenerate soft tissue at the wound sit... A wound care system consisting of ciprofloxacin-loaded gelatin microspheres impregnated in a macroporous collagen scaffold was created to effectively control wound infection and regenerate soft tissue at the wound site.Histological and biochemical alterations were observed in infected wounds treated with these scaffolds in Albino Wistar rats.Furthermore,the study examined the immediate and prolonged release of ciprofloxacin from the scaffolds,as well as their function in eliminating bacterial infections and expediting the process of skin healing and regeneration.The developed technique was followed in the streamlined process of creating these collagen scaffolds.Compared to untreated wounds,the group receiving scaffold treatment experienced a faster rate of wound closure.It was noted that the rate of infections was considerably reduced and that full soft tissue regeneration occurred within 12 days.The development of well-deposited collagen bundles in the treated groups was demonstrated by H&E staining,which verified the flawless regeneration of the dermis and epidermis.The antimicrobial agent-loaded gelatin microspheres impregnated into the porous collagen scaffold demonstrated remarkable soft tissue regeneration and efficient infection control at the wound site. 展开更多
关键词 Gelatin microspheres Collagen Controlled release Wound healing
下载PDF
Research Progress on the Preparation of Inorganic/Natural Materials Composite Microspheres
7
作者 Jing Cao Chaojie Feng Wen Duan 《Expert Review of Chinese Chemical》 2024年第1期15-20,共6页
Microspheres are a new type of drug carrier with great potential for development and application.Natural polymers have good biocompatibility,biodegradability,and are easily dispersed in living organisms,making them su... Microspheres are a new type of drug carrier with great potential for development and application.Natural polymers have good biocompatibility,biodegradability,and are easily dispersed in living organisms,making them suitable for preparing microspheres.Inorganic materials(mainly inorganic minerals)have excellent mechanical properties and are inexpensive and easy to obtain.Through the coupling and hybridization of natural polymers and inorganic materials,they can complement each other's advantages and synergistically enhance efficiency,resulting in many excellent physical and chemical properties.Inorganic materials/natural polymer composite microspheres can be prepared by modifying natural polymers with inorganic materials through various methods such as emulsification crosslinking,solution mixing,in-situ synthesis,extrusion,etc.The application of inorganic materials/natural polymer composite microspheres in drug delivery systems has significant sustained-release effects,is safe and non-toxic,and the cost of carrier materials is relatively low,which has certain significance for the development of new drug carriers.This article reviews the recent research on the preparation,drug loading and release properties of inorganic material/natural polymer composite microspheres,analyzes the advantages and disadvantages of commonly used preparation methods,and looks forward to the development direction of composite microspheres. 展开更多
关键词 natural polymer materials composite microspheres PREPARATION research progress
下载PDF
Preparation of Calcium Cross-linked Nano-Fe3O4 Modified Zeolite Microspheres for Cu^2+ Adsorption from Wastewater 被引量:2
8
作者 WEI Junchong 龙学军 +4 位作者 王佳 TANG Zheng WANG Tingting KANG Hanyu LIANG Shuang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第6期1021-1030,共10页
Artificial zeolite was modified by nano-Fe3O4 for development of functional adsorbents.Subsequently,adsorbents such as calcium cross-linked nano-Fe3O4 microspheres (Ca-MS),calcium cross-linked nano-Fe3O4 modified zeol... Artificial zeolite was modified by nano-Fe3O4 for development of functional adsorbents.Subsequently,adsorbents such as calcium cross-linked nano-Fe3O4 microspheres (Ca-MS),calcium cross-linked nano-Fe3O4 modified zeolite microspheres (Ca-MZS) and iron cross-linked nano-Fe3O4 modified zeolite microspheres (Fe-MZS) were prepared and compared for their adsorption performance.The effects of adsorbent dosage,solution pH,initial concentration and ion content on the removal of Cu^2+ from wastewater are investigated,and the adsorption kinetics and isotherms for the adsorbent materials were analyzed.The experimental results indicate that for the initial concentration of Cu^2+ of 30 mg/L,the adsorption is noted to be most stable.The optimal initial pH for adsorbing Cu^2+ is observed to be 5.5.At an optimal dosage of Ca-MZS of 900 mg/L,the adsorption capacity is measured to be 28.25 mg/g,along with the removal rate of 72.49%.The addition of Na+ and K+ affects the adsorption of Cu^2+.For the Na^+ and K^+ concentration of 0.2 mmol/L,the Cu^2+ removal rate by Ca-MZS drops to 11.94% and 22.12%,respectively.As compared with the adsorbents such as Natural Zeolite (NZ),Ca-MS and Fe-MZS,Ca-MZS demonstrates the best removal effect in solution,where the removal rate reaches 84.27%,with the maximum adsorption capacity of 28.09 mg/g.The Cu^2+ adsorption kinetics of Ca-MZS is observed to follow the Elovich kinetic model,with the adsorption isotherm data fitting the Freundlich isotherm model by using the non-linear method. 展开更多
关键词 ADSORBENT modified zeolite CU^2+ NANO-FE3O4 microspheres
下载PDF
AlCl<sub>3</sub>Cross-Linked and Spray Dried Carboxymethyl Sago Cellulose Microspheres as Potential Carriers for the Enteric Delivery
9
作者 Saravanan Muniyandy Pushpamalar Janarthanan Thenapakiam Sathasivam 《Journal of Materials Science and Chemical Engineering》 2020年第10期21-31,共11页
A semisynthetic polymer of carboxymethyl sago cellulose (CMSC) was synthesized from Malaysian sago biomass and further used in the development of drug delivery system. Recently, we have reported spray-dried carboxymet... A semisynthetic polymer of carboxymethyl sago cellulose (CMSC) was synthesized from Malaysian sago biomass and further used in the development of drug delivery system. Recently, we have reported spray-dried carboxymethyl sago cellulose (CMSC) microspheres for enteric release and dissolution enhancement of piroxicam. In the present investigation, an attempt has been made to improve the enteric release property of CMSC microspheres using aluminium chloride as a cross-linker in the spray drying process and prednisolone as a model drug. CMSC microspheres loaded with prednisolone were prepared using a cross-linker concentration of 0%, 0.01%, 0.025% and 0.05%. All the drug-loaded microspheres were found to have high drug entrapment efficiencies (DEE) ranging from 99% to 106.1%. FT-IR spectroscopy has confirmed the cross-linking in CMSC microspheres as well as intact and amorphous nature of the entrapped drug. Field Emission Scanning Electron Microscope (FESEM) results have shown agglomeration of microspheres and the presence of drugs on the surface. Cross-linked microspheres have shown better efficiency than the uncross-linked microspheres in restricting drug release in stomach pH. Only about 5% of the loaded drug was released from cross-linked microspheres at pH 1.2 while 10% of the drug was released from uncross-linked microspheres. Also, cross-linked microspheres have exhibited faster drug release in pH 6.8 than the uncross-linked microspheres. Spray-dried and AlCl<sub>3</sub> cross-linked CMSC microspheres have shown promising results in enteric drug delivery as well as dissolution enhancement. 展开更多
关键词 microspheres Carboxymethyl Sago Cellulose Drug Delivery PREDNISOLONE
下载PDF
Boosting Interfacial Polarization Through Heterointerface Engineering in MXene/Graphene Intercalated-Based Microspheres for Electromagnetic Wave Absorption 被引量:3
10
作者 Ge Wang Changfeng Li +4 位作者 Diana Estevez Peng Xu Mengyue Peng Huijie Wei Faxiang Qin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期436-460,共25页
Multi-layer 2D material assemblies provide a great number of interfaces beneficial for electromagnetic wave absorption.However,avoiding agglomeration and achieving layer-by-layer ordered intercalation remain chal-leng... Multi-layer 2D material assemblies provide a great number of interfaces beneficial for electromagnetic wave absorption.However,avoiding agglomeration and achieving layer-by-layer ordered intercalation remain chal-lenging.Here,3D reduced graphene oxide(rGO)/MXene/TiO_(2)/Fe_(2)C lightweight porous microspheres with periodical intercalated structures and pronounced inter-facial effects were constructed by spray-freeze-drying and microwave irradiation based on the Maxwell–Wagner effect.Such approach reinforced interfacial effects via defects introduction,porous skeleton,multi-layer assembly and multi-compo-nent system,leading to synergistic loss mechanisms.The abundant 2D/2D/0D/0D intercalated heterojunctions in the microspheres provide a high density of polari-zation charges while generating abundant polarization sites,resulting in boosted interfacial polarization,which is verified by CST Microwave Studio simulations.By precisely tuning the 2D nanosheets intercalation in the heterostructures,both the polarization loss and impedance matching improve significantly.At a low filler loading of 5 wt%,the polarization loss rate exceeds 70%,and a minimum reflection loss(RLmin)of-67.4 dB can be achieved.Moreover,radar cross-section simulations further confirm the attenuation ability of the optimized porous microspheres.These results not only provide novel insights into understanding and enhancing interfacial effects,but also constitute an attractive platform for implementing heterointerface engineering based on customized 2D hierarchical architectures. 展开更多
关键词 MXene Hierarchical microspheres Interfacial polarization Spray-freeze-drying Microwave absorption
下载PDF
Exploration of the Exceptional Capacitive Deionization Performance of CoMn_(2)O_(4) Microspheres Electrode 被引量:2
11
作者 Zhenzhen Liu Haibo Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期119-128,共10页
The“battery type”inorganic electrode has been demonstrated the highly efficient sodium ion intercalation capacity for capacitive deionization.In this work,the CoMn_(2)O_(4)(CMO)microspheres with porous core-shell st... The“battery type”inorganic electrode has been demonstrated the highly efficient sodium ion intercalation capacity for capacitive deionization.In this work,the CoMn_(2)O_(4)(CMO)microspheres with porous core-shell structure are prepared via co-precipitation and followed by annealing.The effects of annealing temperatures on the morphology,pore structure,valence state,and electrochemical behavior of CMO are explored.As electrode for capacitive deionization,the salt removal capacity and current efficiency of optimized AC||CMO device reaches up to 60.7 mg g^(−1) and 97.6%,respectively,and the capacity retention rate is 74.1%after 50 cycles.Remarkably,both the in-situ X-ray diffraction and ex-situ X-ray diffraction analysis features that the intercalation/de-intercalation of sodium ions are governed by(103)and(221)crystal planes of CMO.Accordingly,the density functional theory calculations realize that the adsorption energies of Na+onto(103)and(221)crystal planes are higher than that of any other crystal planes,manifesting the priorities in adsorption of sodium atoms.Furthermore,the X-ray photoelectron spectra of pristine and post-CMO electrode highlights that the reversible conversion of Mn^(3+)/Mn^(4+)couple is resulted from the intercalation/de-intercalation of Na^(+),while this is irreversible for Co^(3+)/Co^(2+)couple.Beyond that,the CMO electrode has been proven the selectivity removal of Na^(+) over K^(+)and Mg^(2+)in a multi-cation stream. 展开更多
关键词 capacitive deionization DESALINATION ELECTROSORPTION microspheres
下载PDF
Waste to wealth: Oxygen-nitrogen-sulfur codoped lignin-derived carbon microspheres from hazardous black liquors for high-performance DSSCs 被引量:1
12
作者 Wenjie Cheng Caichao Wan +6 位作者 Xingong Li Huayun Chai Zhenxu Yang Song Wei Jiahui Su Xueer Tang Yiqiang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期549-563,I0013,共16页
Carbon materials are effective substitutes for Pt counter electrodes(CEs) in dye-sensitized solar cells(DSSCs). However, many of these materials, such as carbon nanotubes and graphene, are expensive and require comple... Carbon materials are effective substitutes for Pt counter electrodes(CEs) in dye-sensitized solar cells(DSSCs). However, many of these materials, such as carbon nanotubes and graphene, are expensive and require complex preparation process. Herein, waste lignin, recycled from hazardous black liquors,is used to create oxygen-nitrogen-sulfur codoped carbon microspheres for use in DSSC CEs through the facile process of low-temperature preoxidation and high-temperature self-activation. The large number of ester bonds formed by preoxidation increase the degree of cross-linking of the lignin chains, leading to the formation of highly disordered carbon with ample defect sites during pyrolysis. The presence of organic O/N/S components in the waste lignin results in high O/N/S doping of the pyrolysed carbon,which increases the electrolyte ion adsorption and accelerates the electron transfer at the CE/electrolyte interface, as confirmed by density functional theory(DFT) calculations. The presence of inorganic impurities enables the construction of a hierarchical micropore-rich carbon structure through the etching effect during self-activation, which can provide abundant catalytically active sites for the reversible adsorption/desorption of electrolyte ions. Under these synergistic effects, the DSSCs that use this novel carbon CE achieve a quite high power-conversion efficiency of 9.22%. To the best of our knowledge, the value is a new record reported so far for biomass-carbon-based DSSCs. 展开更多
关键词 LIGNIN Carbon microspheres CODOPING Hierarchical pores DSSCS
下载PDF
Poly(lactic acid)-aspirin microspheres prepared via the traditional and improved solvent evaporation methods and its application performances 被引量:1
13
作者 Xiaolin Pan Mengyuan Gao +3 位作者 Yun Wang Yanping He Tian Si Yanlin Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期194-204,共11页
Drug-loaded microspheres are significant for the development of modern pharmaceutical products. It is well known that the taken of aspirin for long-term increases the risk of serious gastrointestinal complications, th... Drug-loaded microspheres are significant for the development of modern pharmaceutical products. It is well known that the taken of aspirin for long-term increases the risk of serious gastrointestinal complications, therefore a controllable delivery of aspirin is of importance to lighten those side effects. In this work, poly(lactic acid)(PLA) was chosen as the carrier to prepare PLA-aspirin microspheres by using the traditional and the improved solvent evaporation methods. It was found that no matter which experimental condition was, the encapsulation efficiency of aspirin was higher by using the improved method than that of the traditional method. Specifically, when the concentration of polyvinyl alcohol = 1%(mass),the polymer concentration = 1:20, the oil/water rate = 1:2.5, PLA-aspirin microspheres were obtained via the improved method with a high yield of 82.83%(mass) and an encapsulation efficiency of 44.09%. PLAaspirin microspheres were then prepared continuously using the improved method, which further enhanced the encapsulation efficiency to 54.56%. Approximate 85% aspirin released from microspheres within 7 days. Obvious degradation which was represented by reduction on hardness was observed by soaking microspheres in PBS for 60 days. This work is of interest because it provides a continuous route to prepare PLA-aspirin microspheres continuously with a high drug encapsulation efficiency. 展开更多
关键词 ASPIRIN Degradation Foam-transfer microspheres Poly(lactic acid) Slow-release
下载PDF
Thermal and ignition properties of hexanitrostilbene(HNS) microspheres prepared by droplet microfluidics 被引量:1
14
作者 Rui-shan Han Fei-peng Lu +6 位作者 Fang Zhang Yan-lan Wang Mi Zhou Guo-sheng Qin Jian-hua Chen Hai-fu Wang En-yi Chu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期166-173,共8页
HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were... HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were prepared using droplet microfluidics, and the particle size, morphology, specific surface area, thermal performance, and ignition threshold of the HNS microspheres were characterized and tested. The results shown that the prepared HNS microspheres have high sphericity, with an average particle size of 20.52 μm(coefficient of variation less than 0.2), and a specific surface area of 21.62 m^(2)/g(6.87 m^(2)/g higher than the raw material). Without changing the crystal structure and thermal stability of HNS-IV, this method significantly enhances the sensitivity of HNS-IV to short pulses and reduces the ignition threshold of the slapper detonator to below 1000 V. This will contribute to the miniaturization and low cost of EFI. 展开更多
关键词 MICROFLUIDICS HNS microspheres Thermal stability Ignition threshold
下载PDF
In situ formed cross-linked polymer networks as dual-functional layers for high-stable lithium metal batteries 被引量:1
15
作者 Lei Shi Wanhui Wang +7 位作者 Chunjuan Wang Yang Zhou Yuezhan Feng Tiekun Jia Fang Wang Zhiyu Min Ji Hu Zhigang Xue 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期253-262,共10页
Lithium-metal anodes(LMAs)have been recognized as the ultimate anodes for next-generation batteries with high energy density,but stringent assembly-environment conditions derived from the poor moisture stability drama... Lithium-metal anodes(LMAs)have been recognized as the ultimate anodes for next-generation batteries with high energy density,but stringent assembly-environment conditions derived from the poor moisture stability dramatically hinder the transformation of LMAs from laboratory to industry.Herein,an in situ formed cross-linked polymer layer on LMAs is designed and constructed by a facile thiol-acrylate click chemistry reaction between poly(ethylene glycol)diacrylate(PEGDA)and the crosslinker containing multi thiol groups under UV irradiation.Owing to the hydrophobic nature of the layer,the treated LMAs demonstrate remarkable humid stability for more than 3 h in ambient air(70%relative humidity).The coating humid-resistant protective layer also possesses a dual-functional characterization as solid polymer electrolytes by introducing lithium bis(trifluoromethanesulfonyl)imide in the system in advance.The intimate contact between the polymer layer and LMAs reduces interfacial resistance in the assembled Li/LiFePO_(4)or Li/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)full cell effectively,and endows the cell with an outstanding cycle performance. 展开更多
关键词 Lithium-metal anode Humid-resistant protective film Solid-state polymer electrolytes cross-linked polymers
下载PDF
Nerve growth factor-basic fibroblast growth factor poly-lactide co-glycolid sustained-release microspheres and the small gap sleeve bridging technique to repair peripheral nerve injury 被引量:3
16
作者 Ming Li Ting-Min Xu +7 位作者 Dian-Ying Zhang Xiao-Meng Zhang Feng Rao Si-Zheng Zhan Man Ma Chen Xiong Xiao-Feng Chen Yan-Hua Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期162-169,共8页
We previously prepared nerve growth factor poly-lactide co-glycolid sustained-release microspheres to treat rat sciatic nerve injury using the small gap sleeve technique.Multiple growth factors play a synergistic role... We previously prepared nerve growth factor poly-lactide co-glycolid sustained-release microspheres to treat rat sciatic nerve injury using the small gap sleeve technique.Multiple growth factors play a synergistic role in promoting the repair of peripheral nerve injury;as a result,in this study,we added basic fibroblast growth factors to the microspheres to further promote nerve regeneration.First,in an in vitro biomimetic microenvironment,we developed and used a drug screening biomimetic microfluidic chip to screen the optimal combination of nerve growth factor/basic fibroblast growth factor to promote the regeneration of Schwann cells.We found that 22.56 ng/mL nerve growth factor combined with 4.29 ng/mL basic fibroblast growth factor exhibited optimal effects on the proliferation of primary rat Schwann cells.The successfully prepared nerve growth factor-basic fibroblast growth factor-poly-lactide-co-glycolid sustained-release microspheres were used to treat rat sciatic nerve transection injury using the small gap sleeve bridge technique.Compared with epithelium sutures and small gap sleeve bridging alone,the small gap sleeve bridging technique combined with drug-free sustained-release microspheres has a stronger effect on rat sciatic nerve transfection injury repair at the structural and functional level. 展开更多
关键词 biomimetic microfluidic chip growth factor in vitro biomimetic microenvironment nerve function peripheral nerve injury sciatic nerve small gap sleeve bridging sustained-release microspheres
下载PDF
Novel Bilayer-Shelled N,O-Doped Hollow Porous Carbon Microspheres as High Performance Anode for Potassium-Ion Hybrid Capacitors 被引量:1
17
作者 Zhen Pan Yong Qian +3 位作者 Yang Li Xiaoning Xie Ning Lin Yitai Qian 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期423-435,共13页
With the advantages of high energy/power density,long cycling life and low cost,dual-carbon potassium ion hybrid capacitors(PIHCs)have great potential in the field of energy storage.Here,a novel bilayer-shelled N,O-do... With the advantages of high energy/power density,long cycling life and low cost,dual-carbon potassium ion hybrid capacitors(PIHCs)have great potential in the field of energy storage.Here,a novel bilayer-shelled N,O-doped hollow porous carbon microspheres(NOHPC)anode has been prepared by a self-template method,which is consisted of a dense thin shell and a hollow porous spherical core.Excitingly,the NOHPC anode possesses a high K-storage capacity of 325.9 mA h g^(−1)at 0.1 A g^(−1)and a capacity of 201.1 mAh g^(−1)at 5 A g^(−1)after 6000 cycles.In combination with ex situ characterizations and density functional theory calculations,the high reversible capacity has been demonstrated to be attributed to the co-doping of N/O heteroatoms and porous structure improved K+adsorption and intercalation capabilities,and the stable long-cycling performance originating from the bilayer-shelled hollow porous carbon sphere structure.Meanwhile,the hollow porous activated carbon microspheres(HPAC)cathode with a high specific surface area(1472.65 m^(2)g^(−1))deriving from etching NOHPC with KOH,contributing to a high electrochemical adsorption capacity of 71.2 mAh g^(−1)at 1 A g^(−1).Notably,the NOHPC//HPAC PIHC delivers a high energy density of 90.1 Wh kg^(−1)at a power density of 939.6 W kg^(−1)after 6000 consecutive charge-discharge cycles. 展开更多
关键词 Self-template method Bilayer-shelled hollow porous structure N O-doped carbon microspheres Dual-carbon potassium‐ion hybrid capacitor
下载PDF
Preparation, Properties and Mechanism of Inhomogeneous Calcium Alginate Ion Cross-linking Gel Microspheres 被引量:5
18
作者 CHEN Yi qing SUN Duo xian +1 位作者 LIU Jun HUANG Ya qing 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2003年第1期85-88,共4页
Inhomogeneous calcium alginate ion cross\|linking gel microspheres, a novel ion absorbent, were prepared by dropping a sodium alginate solution to a calcium chloride solution via an electronic droplet generator. C... Inhomogeneous calcium alginate ion cross\|linking gel microspheres, a novel ion absorbent, were prepared by dropping a sodium alginate solution to a calcium chloride solution via an electronic droplet generator. Calcium alginate microspheres have uniform particle sizes, a smooth surface and a microporous structure. The electrode probe reveals the inhomogeneous distribution of calcium ions with the highest concentration on the surface, and the lowest concentration in the cores of the spheres. As a novel ion adsorbent, calcium alginate gel microspheres have a lower limiting adsorption mass concentration, a higher enrichment capacity and a higher adsorption capacity for Pb 2+ than usual ion exchange resins. The highest percentage of the adsorption is 99 79%. The limiting adsorption mass concentration is 0 0426 mg/L. The adsorption capacity for Pb 2+ is 644 mg/g. Calcium alginate gel microspheres have a much faster ion exchange velocity than D418 chelating resin and D113 polyacrylate resin. The moving boundary model was employed to interpret the ion exchange kinetics process, which indicates that the ion exchange process is controlled by intraparticle diffusion of adsorbable ions. So the formation of inhomogeneous gel microspheres reduces the diffusion distance of adsorbable ions within the spheres and enhances the ion exchange velocity. Alginate has a higher selectivity for Pb 2+ than for Ca 2+ and the selectivity coefficient K Pb Ca is 316. As an ion cross\|linking gel, calcium alginate inhomogeneous microspheres can effectively adsorb heavy metal Pb 2+ at a higher selectivity and a higher adsorption velocity. It is a novel and good ion adsorbent. 展开更多
关键词 ALGINATE Inhomogeneous microsphere Adsorption MECHANISM
下载PDF
Cross-linked polyelectrolyte reinforced SnO_(2)electron transport layer for robust flexible perovskite solar cells
19
作者 Zhihao Li Zhi Wan +7 位作者 Chunmei Jia Meng Zhang Meihe Zhang Jiayi Xue Jianghua Shen Can Li Chao Zhang Zhen Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期335-342,I0010,共9页
SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and ad... SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and adhesive polyelectrolyte with ethanolamine(EA)and poly-acrylic acid(PAA).The linear PAA was crosslinked by EA,forming a 3D network that stabilized the SnO_(2)nanoparticle dispersion.An organic–inorganic hybrid ETL is developed by introducing the cross-linked PAA-EA into SnO_(2)ETL,which prevents nano particle agglomeration and facilitates uniform SnO_(2)film formation with fewer defects.Additionally,the PAA-EA-modified SnO_(2)facilitated a uniform and compact perovskite film,enhancing the interface contact and carrier transport.Consequently,the PAA-EA-modified PSCs exhibited excellent PCE of 24.34%and 22.88%with high reproducibility for areas of 0.045 and 1.00 cm~2,respectively.Notably,owing to structure reinforce effect of PAA-EA in SnO_(2)ETL,flexible device demonstrated an impressive PCE of 23.34%while maintaining 90.1%of the initial PCE after 10,000 bending cycles with a bending radius of 5 mm.This successful approach of polyelectrolyte reinforced hybrid organic–inorganic ETL displays great potential for flexible,large-area PSCs application. 展开更多
关键词 POLYELECTROLYTE cross-link Tin oxide Electron transfer layer Flexible solar cells
下载PDF
Fabrication of alginate-based microspheres with cellular structure for tuning ammonium dinitramide performance
20
作者 Dun-ju Wang Xu Zhou +4 位作者 Yao-feng Mao Xin Wang Ye-ming Huang Rui-hao Wang Da-wei Zheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期111-120,共10页
Recently,an emerging category green of energetic material ammonium dinitramide(ADN)has exhibited promising application in propellants due to its outstanding merits in energy release and environmental friendliness.It c... Recently,an emerging category green of energetic material ammonium dinitramide(ADN)has exhibited promising application in propellants due to its outstanding merits in energy release and environmental friendliness.It can be considered to substitute traditional oxidizer of ammonium perchlorate(AP)in military systems and aerospace.In this paper,a novel spherical energetic composite ADN/copper alginate(CA)with a microporous structure was designed and prepared by the W/O gel emulsion method,and a desirable porous microsphere structure was obtained.Multiple characterization techniques were used to investigate the structure and properties of ADN/CA composites.The results showed that ADN crystals were homogeneously encapsulated in an alginate-gel matrix.Thermal decomposition temperature was reduced to 151.7℃compared to ADN,while the activation energy of them was reduced from 129.73 k J/mol(ADN)to 107.50 k J/mol(ADN/CA-4).In addition,as-prepared samples had lower impact and frictional sensitivity than ADN.The mechanism of sensitivity reduction and decomposition are also discussed.Constant-volume combustion tests show that peak pressure of the ADN/CA-4 achieves 253.4 k Pa and pressurization rate of 2750.4 k Pa/s.Hence,this has a promising application in improving the combustion performance and safety performance of solid propellants. 展开更多
关键词 Ammonium dinitramide Sodium alginate microspheres High reactivity Energetic materials
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部