High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)M...High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.展开更多
Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked pol...Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked polymers have the potential to further improve the mechanical property without trading off Li-ion conductivity.In this study,focusing on a recently developed cross-linked SPE,i.e.,the one based on poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network(PVCN),we used solid-state nuclear magnetic resonance(NMR)techniques to investigate the fundamental interaction between the chain segments and Li ions,as well as the lithium-ion motion.By utilizing homonuclear/heteronuclear correlation,CP(cross-polarization)kinetics,and spin-lattice relaxation experiments,etc.,we revealed the structural characteristics and their relations to lithium-ion mobilities.It is found that the network formation prevents poly(ethylene oxide)chains from crystallization,which could create sufficient space for segmental tumbling and Li-ion co nductio n.As such,the mechanical property is greatly improved with even higher Li-ion mobilities compared to the poly(vinylene carbonate)or poly(ethylene oxide)based SPE analogues.展开更多
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ...Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.展开更多
Lithium-metal anodes(LMAs)have been recognized as the ultimate anodes for next-generation batteries with high energy density,but stringent assembly-environment conditions derived from the poor moisture stability drama...Lithium-metal anodes(LMAs)have been recognized as the ultimate anodes for next-generation batteries with high energy density,but stringent assembly-environment conditions derived from the poor moisture stability dramatically hinder the transformation of LMAs from laboratory to industry.Herein,an in situ formed cross-linked polymer layer on LMAs is designed and constructed by a facile thiol-acrylate click chemistry reaction between poly(ethylene glycol)diacrylate(PEGDA)and the crosslinker containing multi thiol groups under UV irradiation.Owing to the hydrophobic nature of the layer,the treated LMAs demonstrate remarkable humid stability for more than 3 h in ambient air(70%relative humidity).The coating humid-resistant protective layer also possesses a dual-functional characterization as solid polymer electrolytes by introducing lithium bis(trifluoromethanesulfonyl)imide in the system in advance.The intimate contact between the polymer layer and LMAs reduces interfacial resistance in the assembled Li/LiFePO_(4)or Li/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)full cell effectively,and endows the cell with an outstanding cycle performance.展开更多
The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycli...The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycling performance and extending service life of LIBs.Here,we report a novel cross-linked network SHSPE(PDDP)containing hydrogen bonds and dynamic disulfide bonds with excellent self-healing properties and nonflammability.The combination of hydrogen bonding between urea groups and the metathesis reaction of dynamic disulfide bonds endows PDDP with rapid self-healing capacity at 28°C without external stimulation.Furthermore,the addition of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide(EMIMTFSI)improves the ionic conductivity(1.13×10^(−4)S cm^(−1)at 28°C)and non-flammability of PDDP.The assembled Li/PDDP/LiFePO_(4)cell exhibits excellent cycling performance with a discharge capacity of 137 mA h g^(−1)after 300 cycles at 0.2 C.More importantly,the self-healed PDDP can recover almost the same ionic conductivity and cycling performance as the original PDDP.展开更多
SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and ad...SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and adhesive polyelectrolyte with ethanolamine(EA)and poly-acrylic acid(PAA).The linear PAA was crosslinked by EA,forming a 3D network that stabilized the SnO_(2)nanoparticle dispersion.An organic–inorganic hybrid ETL is developed by introducing the cross-linked PAA-EA into SnO_(2)ETL,which prevents nano particle agglomeration and facilitates uniform SnO_(2)film formation with fewer defects.Additionally,the PAA-EA-modified SnO_(2)facilitated a uniform and compact perovskite film,enhancing the interface contact and carrier transport.Consequently,the PAA-EA-modified PSCs exhibited excellent PCE of 24.34%and 22.88%with high reproducibility for areas of 0.045 and 1.00 cm~2,respectively.Notably,owing to structure reinforce effect of PAA-EA in SnO_(2)ETL,flexible device demonstrated an impressive PCE of 23.34%while maintaining 90.1%of the initial PCE after 10,000 bending cycles with a bending radius of 5 mm.This successful approach of polyelectrolyte reinforced hybrid organic–inorganic ETL displays great potential for flexible,large-area PSCs application.展开更多
Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfie...Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices.展开更多
Aminated tannins were prepared by reacting mimosa condensed tannin extract with ammonia yielding the substitution of many,if not all of the tannin hydroxyl groups with–NH_(2)groups.A tannin-aminated tannin(ATT)partic...Aminated tannins were prepared by reacting mimosa condensed tannin extract with ammonia yielding the substitution of many,if not all of the tannin hydroxyl groups with–NH_(2)groups.A tannin-aminated tannin(ATT)particleboard coating was then prepared by reacting raw tannin extract with aminated tannin extract and thus cross-linking the two by substituting tannin’s hydroxyl groups with the–NH_(2)groups on the aminated tannin to form–NH-bridges between the two.The resulting particleboard coating gave encouraging results when pressed at 180℃for 3 min.Conversely,the system in which tannin was reacted/cross-liked with urea(ATU)by a similar amination reaction did not perform as well as the ATT system,and this even when a higher curing temperature and longer hot press time were used.In particular its water repellence was worse probably due to the presence of urea and such a system with lower reactivity.Nonetheless,substituting the tannin–OHs with the urea–NH_(2)groups appeared to also take place.ATT gave better results than ATU as regards water repellence and mechanical resistance as shown by the cross cut test.The ATT system was shown to be between 95%and 98%biosourced.The difference appeared to be due,by TMA analysis,to the much faster formation of the ATT hardened network leading to a better cross-linked polymer coating.The chemical species formed for both the ATT and ATU system were studied by MALDI ToF and CP MAS^(13)C NMR.展开更多
AIM:To observe the effects of femtosecond laserassisted excimer laser in situ keratomileusis combined with accelerated corneal cross-linking(FS-LASIK Xtra)on corneal densitometry after correcting for high myopia.METHO...AIM:To observe the effects of femtosecond laserassisted excimer laser in situ keratomileusis combined with accelerated corneal cross-linking(FS-LASIK Xtra)on corneal densitometry after correcting for high myopia.METHODS:In this prospectively study,130 patients underwent FS-LASIK or FS-LASIK Xtra for high myopia.Their right eyes were selected for inclusion in the study,of which 65 cases of 65 eyes in the FS-LASIK group,65 patients with 65 eyes in the FS-LASIK Xtra group.Patients were evaluated for corneal densitometry at 1,3,and 6mo postoperatively using Pentacam Scheimpflug imaging.RESULTS:Preoperative differences in corneal densitometry between the FS-LASIK and FS-LASIK Xtra groups in different ranges were not statistically significant(P>0.05).Layer-by-layer analysis revealed statistically significant differences in the anterior(120μm),central,and total layer corneal densitometry between the FS-LASIK and FS-LASIK Xtra groups at 1 and 3mo postoperatively(all P<0.05),the FS-LASIK Xtra group is higher than that of the FS-LASIK group.Analysis of different diameter ranges showed statistically significant differences between the FS-LASIK group and the FS-LASIK Xtra group at 1mo postoperatively in the ranges of 0–2,2–6,and 6–10 mm(both P<0.05);At 3mo postoperatively,the FS-LASIK Xtra group is higher than that of the FS-LASIK group in the ranges of 0–2 and 2–6 mm(P<0.05).At 6mo postoperatively,there were no statistically significant differences in corneal densitometry between the FS-LASIK group and the FS-LASIK Xtra group in different diameter ranges(all P>0.05).CONCLUSION:There is an increase in internal corneal densitometry during the early postoperative period after FS-LASIK Xtra for correction of high myopia.However,the densitometry values decreased to the level of conventional FS-LASIK at 6mo after surgery,with the most significant changes observed in the superficial central zone.展开更多
The performance of cross-linked magnetic chitosan, coated with magnetic fluids and cross-linked with ePichlorohydrin, was investigated for the adsorption of Copper (Ⅱ) from aqueous solutions. Infrared spectra of ch...The performance of cross-linked magnetic chitosan, coated with magnetic fluids and cross-linked with ePichlorohydrin, was investigated for the adsorption of Copper (Ⅱ) from aqueous solutions. Infrared spectra of chitosan before and after modification showed that the coating and cross-linking are effective. Experiments were performed at different pH of solution and contact time, and appropriate conditions for the adsorption of Cu(Ⅱ) were determined. Experimental equilibrium data were correlated with Langmuir and Freundlich isotherms for determination of the adsorption potential. The results showed that the Langmuir isotherm was better compared with the Freundlich isotherm, and the uptake of Cu(Ⅱ) was 78.13 mg·g^- 1. The kinetics of adsorption corresponded with the first-order Langergren rate equation, and Langergren rate constants were determined.展开更多
Performance characteristics of partially hydrolyzed polyacrylamide (HPAM) and cross- linked polymer (CLP, Cr^3+ as the cross linker) solutions have been investigated. A Brookfield viscometer, rheometer, dynamic l...Performance characteristics of partially hydrolyzed polyacrylamide (HPAM) and cross- linked polymer (CLP, Cr^3+ as the cross linker) solutions have been investigated. A Brookfield viscometer, rheometer, dynamic light scattering system, and core flow device have been used to measure the viscosity, viscoelasticity, polymer coil dimensions, molecular configuration, flow characteristics, and profile modification. The results show that, under conditions of high salinity and low HPAM and Cr^3+ concentrations, cross-linking mainly occurred between different chains of the same HPAM molecule in the presence of Cr^3+, and a cross-linked polymer (CLP) system with a local network structure was formed. Compared with an HPAM solution of the same concentration, the apparent viscosity of the CLP solution increased slightly or remained almost unchanged, but its viscoelasticity (namely storage modulus, loss modulus, and first normal stress difference) increased, and the resistance coefficient and residual resistance coefficient increased significantly. This indicates that the CLP solution exhibits a strong capability to divert the sequentially injected polymer flood from high-permeability zones to low- permeability zones in a reservoir. Under the same HPAM concentration conditions, the dimensions of polymer coils in the CLP solution increased slightly compared with the dimensions of polymer coils in HPAM solution, which were smaller than the rock pores, indicating that the cross-linked polymer solution was well adapted to reservoir rocks. Core flood experiments show that at the same cost of reagent, the oil recovery by CLP injection (HPAM-1, Cr^3+ as the cross linker) is 3.1% to 5.2% higher than that by HPAM- 2 injection.展开更多
A new type of crown ether cross-linked chitosan was synthesized by the reaction of chitosan with 4,4′-dibromodibenzo-18-crown-6 (Br-DBC). Its token structure was analyzed with FT-IR and NMR and the adsorption behavio...A new type of crown ether cross-linked chitosan was synthesized by the reaction of chitosan with 4,4′-dibromodibenzo-18-crown-6 (Br-DBC). Its token structure was analyzed with FT-IR and NMR and the adsorption behaviors for lead and cadmium in environmental water samples by FAAS were studied. In addition the best analysis conditions were discussed and the adsorption mechanism was explained. As the enrichment factor is above 100, both recoveries are 94%–106%, the detection limits of lead and cadmium are 0.5μg·L?1 and 0.04 μg·L?1 and the relatively standard deviations of lead and cadmium are 3.1% and 2.8% respectively, this new method was successfully applied to the determination of environmental water samples. This method is fast and simple and it greatly enhances the determination ability of FAAS for lead and cadmium.展开更多
Based on the ESI-MS and ^(13)C-NMR analysis of the forms of glyoxal in acidic and alkaline solutions,the soy-based adhesive cross-linked by glyoxal was prepared in this work.The results showed that glyoxal existed in ...Based on the ESI-MS and ^(13)C-NMR analysis of the forms of glyoxal in acidic and alkaline solutions,the soy-based adhesive cross-linked by glyoxal was prepared in this work.The results showed that glyoxal existed in water in different forms at different pH levels.Under alkaline conditions,glyoxal transformed to glycolate through the intramolecular disproportionation reaction.Under acidic conditions,although some of glyoxal transformed to glycolate as what happened under alkaline conditions,most of glyoxal molecules existed in the form of fiveor six-membered cyclic ether structure.No ethylene tetraol or free aldehyde group was actually detected under these conditions.Although glyoxal reacted with soy protein under both acidic and alkaline conditions,alkaline conditions were more favorable for the improvement of mechanical performance and water resistance of soybased adhesives than acid conditions.展开更多
Large-scale and low-cost preparation of carbon-based potassium anode with long life and high capacity is one of the footstones for the development of potassium ion batteries(PIBs).Herein,a low-cost carbon-based materi...Large-scale and low-cost preparation of carbon-based potassium anode with long life and high capacity is one of the footstones for the development of potassium ion batteries(PIBs).Herein,a low-cost carbon-based material,cross-linked hollow graphitic carbon(HGC),is large scale synthesized to apply for PIBs anode.Its hollow structure can afford sufficient space to overcome the damage caused by the volume expansion of graphitic carbon(GC).While the cross-linked structure forms a compact interconnection network that allows electrons to rapid transfer between different GC frameworks.Electrochemical measurements demonstrated that the HGC anode exhibited low charge/discharge plateau(about 0.25 V and 0.1 V)and excellent specific capacity as high as 298 m A h g^(-1)at the current density of 50 m A g^(-1).And more important,after 200 cycles the capacity of HGC anode still shows 269 m A h g^(-1)(the decay rate of per cycle is only 0.048%).Meanwhile,the use of commercial traditional electrolyte(KPF_(6))and cheap raw materials that provide new hope for trying and realizing the large-scale production of PIBs based on carbon anode materials.展开更多
The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achi...The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achieving simultaneously defect passivation and grain protection from moisture is crucial for the viability of perovskite solar cells.Here,an in situ cross-linked grain encapsulation(CLGE)strategy that improves both device stability and defect passivation is reported.Cross-linkable semiconducting small molecules are mixed into the antisolvent to uniformly form a compact and conducting cross-linked layer over the grain surfaces.This cross-linked coating layer not only passivates trap states and facilitates hole extraction,but also enhances the device stability by preventing moisture diffusion.Using the CLGE strategy,a high power conversion efficiency(PCE)of 22.7%is obtained in 1.55-eV bandgap planar perovskite solar cells.The unencapsulated devices with CLGE exhibit significantly enhanced device stability again moisture and maintain>90%of their initial PCE after shelf storage under ambient condition for over10,000 h.展开更多
An efficient extraction-free oxidative desulfurization(ODS)process using a series of cross-linked polyionic liquid phosphotungstate(CLPIL-PW)catalysts is reported.The cross-linked PILs were prepared with DVB and 1-n-a...An efficient extraction-free oxidative desulfurization(ODS)process using a series of cross-linked polyionic liquid phosphotungstate(CLPIL-PW)catalysts is reported.The cross-linked PILs were prepared with DVB and 1-n-alkyl-3-vinyl imidazole hydrobromide(alkyl=ethyl,butyl,octyl,dodecyl),and were then assembled with phosphotungstic acid(H_(3)PW_(12)O_(40))to form the catalysts.The CLPIL-PWs have been applied to the oxidative removal of dibenzothiophene(DBT)from model oil with H_(2)O_(2) as an oxidant.The effects of ionic liquid(IL)cationic species,varying the DVB/IL molar ratio in the polymerization process,and varying operating conditions were investigated.The CLPIL-PWs were characterized by inductively coupled plasma(ICP)mass spectrometry,elemental analysis,scanning electron microscopy(SEM),Fourier transform infra-red(FTIR)spectroscopy,X-ray diffraction(XRD),^(13)C and^(31)P nuclear magnetic resonance(NMR)spectroscopy.The polydivinylbenzene-co-1-n-octyl-3-vinyl imidazole phosphotungstate(P(DVB-OVIm)PW)exhibited the highest DBT removal efficiency(99.9%)and remarkable recyclability,and could be reused eight times without reducing its activity.Finally,an extraction-free ODS mechanism is proposed.展开更多
Electron spin resonance techniques were employed to investigate the effects of the absorbed dose and post-irradiation conditions on the evolution and decay of free-radicals in cross-linked polytetrafluoroethylene(XPTF...Electron spin resonance techniques were employed to investigate the effects of the absorbed dose and post-irradiation conditions on the evolution and decay of free-radicals in cross-linked polytetrafluoroethylene(XPTFE),induced byγ-ray radiation.Chain-end free-radicals,chain alkyl free-radicals,and tertiary alkyl free-radicals were detected when XPTFE was irradiated under Ar atmosphere.The corresponding peroxy free-radicals were formed upon exposure of irradiated XPTFE to air;the freeradicals concentration first increased linearly with increasing absorbed dose and then gradually saturated.The free-radicals yield under air atmosphere was greater than that under Ar,and the peroxy free-radicals were preserved for a relatively long time when irradiated XPTFE was stored under air atmosphere.The chain alkyl free-radicals may be converted to chain end free-radicals byβ-scission,while chain end free-radicals are more sensitive to oxygen than chain alkyl free-radicals.When the annealing temperature was raised above the a-transition temperature of XPTFE,the decay of the free-radicals was greatly affected and accelerated by the motion of the molecules over the long range.展开更多
Cross-linked polyethylene (PEX) pipes used in hot water supply are required for high mechanical strength and high creep resistance at high temperature. Especially PEX-a pipes which are made by peroxide cross-linking h...Cross-linked polyethylene (PEX) pipes used in hot water supply are required for high mechanical strength and high creep resistance at high temperature. Especially PEX-a pipes which are made by peroxide cross-linking have better performance, such as creep resistance and thermal shock resistance than the pipes made by the other cross-linking method. Because the PEX-a pipes indicate the higher cross-link degree as compared with the other PEX pipes. In this study, the PEX-a pipes which were mixed with several stabilizers were tested to evaluate the effects on cross-link degree and the oxygen induction time. And also they are evaluated with the chlorine aqueous solution by the performance of the long-term hydrostatic pressure test and the long-term hydro dynamic pressure test. As a result, it was found that the combination of antioxidants for PEX-a pipes plays an important role to prolong the oxygen induction time without inhibiting the cross-linking. From the results of the 1H pulsed NMR measurement over the melting point of polyethylene, it was found that each peroxide PEX pipe with different antioxidant combinations indicated the different proportion and crosslink density of cross-linked region, in addition, that these pipes had the effective structure of cross-linking for the hydrostatic and hydrodynamic pressure test with the chlorine aqueous solution. Therefore, it was considered to be useful results for studies of the stricture of cross-linking of polyethylene.展开更多
Cross-linked pectin/high amylose mixtures were evaluated as a new excipient for matrix tablets formulations,since the mixing of polymers and cross-linking reaction represent rational tools to reach materials with modu...Cross-linked pectin/high amylose mixtures were evaluated as a new excipient for matrix tablets formulations,since the mixing of polymers and cross-linking reaction represent rational tools to reach materials with modulated and specific properties that meet specific therapeutic needs.Objective:In this work the influence of polymer ratio and cross-linking process on the swelling and the mechanism driving the drug release from swellable matrix tablets prepared with this excipient was investigated.Methods:Cross-linked samples were characterized by their micromeritic properties(size and shape,density,angle of repose and flow rate)and liquid uptake ability.Matrix tablets were evaluated according their physical properties and the drug release rates and mechanisms were also investigated.Results:Cross-linked samples demonstrated size homogeneity and irregular shape,with liquid uptake ability insensible to pH.Cross-linking process of samples allowed the control of drug release rates and the drug release mechanism was influenced by both polymer ratio and cross-linking process.The drug release of samples with minor proportion of pectin was driven by an anomalous transport and the increase of the pectin proportion contributed to the erosion of the matrix.Conclusion:The cross-linked mixtures of high amylose and pectin showed a suitable excipient for slowing the drug release rates.展开更多
Cross-linked polystyrene/glass fiber composites were fabricated using cross-linked polystyrene (CLPS) as matrix and E-glass fiber as the reinforcement. Surfaces of E-glass fibers were modified by vinyl triethoxysila...Cross-linked polystyrene/glass fiber composites were fabricated using cross-linked polystyrene (CLPS) as matrix and E-glass fiber as the reinforcement. Surfaces of E-glass fibers were modified by vinyl triethoxysilane (VTES), vinyl trimethoxysilane (VTMS) and γ-methacryloylpropyl trimethoxysilane (MPS). The treated glass fibers were analyzed by fourier transform infrared spectroscopy (FTIR). Dynamic mechanical thermal analysis (DMTA) and thermo-gravimetric analysis (TGA) were employed to investigate the effect of glass fibers surface modification on viscoelastic behavior and thermal properties. The morphology of fracture surfaces of various composites was observed by scanning electron microscopy (SEM). The results revealed that these coupling agents were connected to the surfaces of the fibers by chemical bonding. Dynamic mechanical properties as well as thermal stability of the composites were improved considerablely, but to varying degrees depending on the fiber modification. The diversities of improvement of properties were attributed to the different interfacial adhesion between CLPS matrix and the glass fibers.展开更多
基金supported by the National Natural Science Foundation of China(52162030)the Yunnan Major Scientific and Technological Projects(202202AG050003)+4 种基金the Key Research and Development Program of Yunnan Province(202103AA080019)the Scientific Research Foundation of Kunming University of Science and Technology(20220122)the Graduate Student Top Innovative Talent Program of Kunming University of Science and Technology(CA23107M139A)the Analysis and Testing Foundation of Kunming University of Science and Technology(2023T20220122)the Shenzhen Science and Technology Program(KCXST20221021111201003)。
文摘High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.
基金financially supported by the National Natural Science Foundation of China(Grant No.22325405,22321002,22279153)Liaoning Revitalization Talents Program(XLYC1807207,XLYC2203134)DICP I202104。
文摘Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked polymers have the potential to further improve the mechanical property without trading off Li-ion conductivity.In this study,focusing on a recently developed cross-linked SPE,i.e.,the one based on poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network(PVCN),we used solid-state nuclear magnetic resonance(NMR)techniques to investigate the fundamental interaction between the chain segments and Li ions,as well as the lithium-ion motion.By utilizing homonuclear/heteronuclear correlation,CP(cross-polarization)kinetics,and spin-lattice relaxation experiments,etc.,we revealed the structural characteristics and their relations to lithium-ion mobilities.It is found that the network formation prevents poly(ethylene oxide)chains from crystallization,which could create sufficient space for segmental tumbling and Li-ion co nductio n.As such,the mechanical property is greatly improved with even higher Li-ion mobilities compared to the poly(vinylene carbonate)or poly(ethylene oxide)based SPE analogues.
基金supported by the National Key Research and Development Program of China(2022YFB4101800)National Natural Science Foundation of China(22278077,22108040)+2 种基金Key Program of Qingyuan Innovation Laboratory(00221004)Research Program of Qingyuan Innovation Laboratory(00523006)Natural Science Foundation of Fujian Province(2022J02019)。
文摘Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.
基金the Science and Technology Department of Henan Province of China(Grant No.222102240060 and 222300420541)the Education Department of Henan Province of China(Grant No.22B430023)supported by the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(Grant No.23IRTSTHN009)。
文摘Lithium-metal anodes(LMAs)have been recognized as the ultimate anodes for next-generation batteries with high energy density,but stringent assembly-environment conditions derived from the poor moisture stability dramatically hinder the transformation of LMAs from laboratory to industry.Herein,an in situ formed cross-linked polymer layer on LMAs is designed and constructed by a facile thiol-acrylate click chemistry reaction between poly(ethylene glycol)diacrylate(PEGDA)and the crosslinker containing multi thiol groups under UV irradiation.Owing to the hydrophobic nature of the layer,the treated LMAs demonstrate remarkable humid stability for more than 3 h in ambient air(70%relative humidity).The coating humid-resistant protective layer also possesses a dual-functional characterization as solid polymer electrolytes by introducing lithium bis(trifluoromethanesulfonyl)imide in the system in advance.The intimate contact between the polymer layer and LMAs reduces interfacial resistance in the assembled Li/LiFePO_(4)or Li/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)full cell effectively,and endows the cell with an outstanding cycle performance.
基金supported by R&D Program of Power Batteries with Low Temperature and High Energy,Science and Technology Bureau of Changchun(19SS013)Key Subject Construction of Physical Chemistry of Northeast Normal University+1 种基金the Fundamental Research Funds for the Central Universities(2412020FZ007,2412020FZ008)National Natural Science Foundation of China(22102020)
文摘The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycling performance and extending service life of LIBs.Here,we report a novel cross-linked network SHSPE(PDDP)containing hydrogen bonds and dynamic disulfide bonds with excellent self-healing properties and nonflammability.The combination of hydrogen bonding between urea groups and the metathesis reaction of dynamic disulfide bonds endows PDDP with rapid self-healing capacity at 28°C without external stimulation.Furthermore,the addition of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide(EMIMTFSI)improves the ionic conductivity(1.13×10^(−4)S cm^(−1)at 28°C)and non-flammability of PDDP.The assembled Li/PDDP/LiFePO_(4)cell exhibits excellent cycling performance with a discharge capacity of 137 mA h g^(−1)after 300 cycles at 0.2 C.More importantly,the self-healed PDDP can recover almost the same ionic conductivity and cycling performance as the original PDDP.
基金supported by the National Key R&D Program of China(2019YFB1503201)the National Natural Science Foundation of China(52172238,52102304,51902264)+3 种基金the Natural Science Foundation of Shanxi Province(2020JM-093)the Open project of Shaanxi Laboratory of Aerospace Power(2021SXSYS-01-03)the Science Technology and Innovation Commission of Shenzhen Municipality(JCYJ20190807111605472)the Fundamental Research Funds for the Central Universities(3102019JC0005,5000220118)。
文摘SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and adhesive polyelectrolyte with ethanolamine(EA)and poly-acrylic acid(PAA).The linear PAA was crosslinked by EA,forming a 3D network that stabilized the SnO_(2)nanoparticle dispersion.An organic–inorganic hybrid ETL is developed by introducing the cross-linked PAA-EA into SnO_(2)ETL,which prevents nano particle agglomeration and facilitates uniform SnO_(2)film formation with fewer defects.Additionally,the PAA-EA-modified SnO_(2)facilitated a uniform and compact perovskite film,enhancing the interface contact and carrier transport.Consequently,the PAA-EA-modified PSCs exhibited excellent PCE of 24.34%and 22.88%with high reproducibility for areas of 0.045 and 1.00 cm~2,respectively.Notably,owing to structure reinforce effect of PAA-EA in SnO_(2)ETL,flexible device demonstrated an impressive PCE of 23.34%while maintaining 90.1%of the initial PCE after 10,000 bending cycles with a bending radius of 5 mm.This successful approach of polyelectrolyte reinforced hybrid organic–inorganic ETL displays great potential for flexible,large-area PSCs application.
基金funding supports from the Natural Science Basis Research Plan in Shaanxi Province of China(2019JLZ-10)the Independent Research Project of National Key Laboratory of Electrical Insulation and Power Equipment(EIPE19111)。
文摘Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices.
基金supported by a grant of the French Agence Nationale de la Recherche(ANR)in the Ambit of the Laboratory of Excellence(Labex)ARBRE.This work was also supported by“The 111 Project(D21027)”.
文摘Aminated tannins were prepared by reacting mimosa condensed tannin extract with ammonia yielding the substitution of many,if not all of the tannin hydroxyl groups with–NH_(2)groups.A tannin-aminated tannin(ATT)particleboard coating was then prepared by reacting raw tannin extract with aminated tannin extract and thus cross-linking the two by substituting tannin’s hydroxyl groups with the–NH_(2)groups on the aminated tannin to form–NH-bridges between the two.The resulting particleboard coating gave encouraging results when pressed at 180℃for 3 min.Conversely,the system in which tannin was reacted/cross-liked with urea(ATU)by a similar amination reaction did not perform as well as the ATT system,and this even when a higher curing temperature and longer hot press time were used.In particular its water repellence was worse probably due to the presence of urea and such a system with lower reactivity.Nonetheless,substituting the tannin–OHs with the urea–NH_(2)groups appeared to also take place.ATT gave better results than ATU as regards water repellence and mechanical resistance as shown by the cross cut test.The ATT system was shown to be between 95%and 98%biosourced.The difference appeared to be due,by TMA analysis,to the much faster formation of the ATT hardened network leading to a better cross-linked polymer coating.The chemical species formed for both the ATT and ATU system were studied by MALDI ToF and CP MAS^(13)C NMR.
基金Supported by Shandong Province Medical Staff Science and Technology Innovation Program Project(No.SDYWZGKCJH2022021).
文摘AIM:To observe the effects of femtosecond laserassisted excimer laser in situ keratomileusis combined with accelerated corneal cross-linking(FS-LASIK Xtra)on corneal densitometry after correcting for high myopia.METHODS:In this prospectively study,130 patients underwent FS-LASIK or FS-LASIK Xtra for high myopia.Their right eyes were selected for inclusion in the study,of which 65 cases of 65 eyes in the FS-LASIK group,65 patients with 65 eyes in the FS-LASIK Xtra group.Patients were evaluated for corneal densitometry at 1,3,and 6mo postoperatively using Pentacam Scheimpflug imaging.RESULTS:Preoperative differences in corneal densitometry between the FS-LASIK and FS-LASIK Xtra groups in different ranges were not statistically significant(P>0.05).Layer-by-layer analysis revealed statistically significant differences in the anterior(120μm),central,and total layer corneal densitometry between the FS-LASIK and FS-LASIK Xtra groups at 1 and 3mo postoperatively(all P<0.05),the FS-LASIK Xtra group is higher than that of the FS-LASIK group.Analysis of different diameter ranges showed statistically significant differences between the FS-LASIK group and the FS-LASIK Xtra group at 1mo postoperatively in the ranges of 0–2,2–6,and 6–10 mm(both P<0.05);At 3mo postoperatively,the FS-LASIK Xtra group is higher than that of the FS-LASIK group in the ranges of 0–2 and 2–6 mm(P<0.05).At 6mo postoperatively,there were no statistically significant differences in corneal densitometry between the FS-LASIK group and the FS-LASIK Xtra group in different diameter ranges(all P>0.05).CONCLUSION:There is an increase in internal corneal densitometry during the early postoperative period after FS-LASIK Xtra for correction of high myopia.However,the densitometry values decreased to the level of conventional FS-LASIK at 6mo after surgery,with the most significant changes observed in the superficial central zone.
文摘The performance of cross-linked magnetic chitosan, coated with magnetic fluids and cross-linked with ePichlorohydrin, was investigated for the adsorption of Copper (Ⅱ) from aqueous solutions. Infrared spectra of chitosan before and after modification showed that the coating and cross-linking are effective. Experiments were performed at different pH of solution and contact time, and appropriate conditions for the adsorption of Cu(Ⅱ) were determined. Experimental equilibrium data were correlated with Langmuir and Freundlich isotherms for determination of the adsorption potential. The results showed that the Langmuir isotherm was better compared with the Freundlich isotherm, and the uptake of Cu(Ⅱ) was 78.13 mg·g^- 1. The kinetics of adsorption corresponded with the first-order Langergren rate equation, and Langergren rate constants were determined.
基金financial support from the National Key Technology R&D Program in the 12th Five Year Plan of PetroChina (No: 2011ZX05010-003-02)the National Key Technology R&D Program in the 12th Five Year Plan of CNOOC (No: 2011ZX05024-04-05-03)
文摘Performance characteristics of partially hydrolyzed polyacrylamide (HPAM) and cross- linked polymer (CLP, Cr^3+ as the cross linker) solutions have been investigated. A Brookfield viscometer, rheometer, dynamic light scattering system, and core flow device have been used to measure the viscosity, viscoelasticity, polymer coil dimensions, molecular configuration, flow characteristics, and profile modification. The results show that, under conditions of high salinity and low HPAM and Cr^3+ concentrations, cross-linking mainly occurred between different chains of the same HPAM molecule in the presence of Cr^3+, and a cross-linked polymer (CLP) system with a local network structure was formed. Compared with an HPAM solution of the same concentration, the apparent viscosity of the CLP solution increased slightly or remained almost unchanged, but its viscoelasticity (namely storage modulus, loss modulus, and first normal stress difference) increased, and the resistance coefficient and residual resistance coefficient increased significantly. This indicates that the CLP solution exhibits a strong capability to divert the sequentially injected polymer flood from high-permeability zones to low- permeability zones in a reservoir. Under the same HPAM concentration conditions, the dimensions of polymer coils in the CLP solution increased slightly compared with the dimensions of polymer coils in HPAM solution, which were smaller than the rock pores, indicating that the cross-linked polymer solution was well adapted to reservoir rocks. Core flood experiments show that at the same cost of reagent, the oil recovery by CLP injection (HPAM-1, Cr^3+ as the cross linker) is 3.1% to 5.2% higher than that by HPAM- 2 injection.
文摘A new type of crown ether cross-linked chitosan was synthesized by the reaction of chitosan with 4,4′-dibromodibenzo-18-crown-6 (Br-DBC). Its token structure was analyzed with FT-IR and NMR and the adsorption behaviors for lead and cadmium in environmental water samples by FAAS were studied. In addition the best analysis conditions were discussed and the adsorption mechanism was explained. As the enrichment factor is above 100, both recoveries are 94%–106%, the detection limits of lead and cadmium are 0.5μg·L?1 and 0.04 μg·L?1 and the relatively standard deviations of lead and cadmium are 3.1% and 2.8% respectively, this new method was successfully applied to the determination of environmental water samples. This method is fast and simple and it greatly enhances the determination ability of FAAS for lead and cadmium.
基金This work was supported by Science-technology Support Foundation of Guizhou Province of China(Nos.[2019]2325 and [2020]1Y125)the Growth Project of Young Scientific and Technological Talents in Colleges and Universities of Guizhou Province(No.[2019]184)+1 种基金Yunnan Fundamental Research Key Projects(No.2019FA012)National Natural Science Foundation of China(Nos.31870546 and 31800481).
文摘Based on the ESI-MS and ^(13)C-NMR analysis of the forms of glyoxal in acidic and alkaline solutions,the soy-based adhesive cross-linked by glyoxal was prepared in this work.The results showed that glyoxal existed in water in different forms at different pH levels.Under alkaline conditions,glyoxal transformed to glycolate through the intramolecular disproportionation reaction.Under acidic conditions,although some of glyoxal transformed to glycolate as what happened under alkaline conditions,most of glyoxal molecules existed in the form of fiveor six-membered cyclic ether structure.No ethylene tetraol or free aldehyde group was actually detected under these conditions.Although glyoxal reacted with soy protein under both acidic and alkaline conditions,alkaline conditions were more favorable for the improvement of mechanical performance and water resistance of soybased adhesives than acid conditions.
基金financially supported by National Natural Science Foundation of China(Nos.51922038 and 51672078)Hunan Outstanding Youth Talents(No.2019JJ20005)
文摘Large-scale and low-cost preparation of carbon-based potassium anode with long life and high capacity is one of the footstones for the development of potassium ion batteries(PIBs).Herein,a low-cost carbon-based material,cross-linked hollow graphitic carbon(HGC),is large scale synthesized to apply for PIBs anode.Its hollow structure can afford sufficient space to overcome the damage caused by the volume expansion of graphitic carbon(GC).While the cross-linked structure forms a compact interconnection network that allows electrons to rapid transfer between different GC frameworks.Electrochemical measurements demonstrated that the HGC anode exhibited low charge/discharge plateau(about 0.25 V and 0.1 V)and excellent specific capacity as high as 298 m A h g^(-1)at the current density of 50 m A g^(-1).And more important,after 200 cycles the capacity of HGC anode still shows 269 m A h g^(-1)(the decay rate of per cycle is only 0.048%).Meanwhile,the use of commercial traditional electrolyte(KPF_(6))and cheap raw materials that provide new hope for trying and realizing the large-scale production of PIBs based on carbon anode materials.
基金financially supported by the National Key R&D Program of China(2018YFB1500102,2018YFB2200101)the National Natural Science Foundation of China(61974063,61921005)+3 种基金Natural Science Foundation of Jiangsu Province(BK20190315)the Fundamental Research Funds for the Central Universities(14380168)the Thousand Talent Program for Young Outstanding Scientists in ChinaProgram for Innovative Talents and Entrepreneur in Jiangsu。
文摘The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achieving simultaneously defect passivation and grain protection from moisture is crucial for the viability of perovskite solar cells.Here,an in situ cross-linked grain encapsulation(CLGE)strategy that improves both device stability and defect passivation is reported.Cross-linkable semiconducting small molecules are mixed into the antisolvent to uniformly form a compact and conducting cross-linked layer over the grain surfaces.This cross-linked coating layer not only passivates trap states and facilitates hole extraction,but also enhances the device stability by preventing moisture diffusion.Using the CLGE strategy,a high power conversion efficiency(PCE)of 22.7%is obtained in 1.55-eV bandgap planar perovskite solar cells.The unencapsulated devices with CLGE exhibit significantly enhanced device stability again moisture and maintain>90%of their initial PCE after shelf storage under ambient condition for over10,000 h.
基金supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2019B025)
文摘An efficient extraction-free oxidative desulfurization(ODS)process using a series of cross-linked polyionic liquid phosphotungstate(CLPIL-PW)catalysts is reported.The cross-linked PILs were prepared with DVB and 1-n-alkyl-3-vinyl imidazole hydrobromide(alkyl=ethyl,butyl,octyl,dodecyl),and were then assembled with phosphotungstic acid(H_(3)PW_(12)O_(40))to form the catalysts.The CLPIL-PWs have been applied to the oxidative removal of dibenzothiophene(DBT)from model oil with H_(2)O_(2) as an oxidant.The effects of ionic liquid(IL)cationic species,varying the DVB/IL molar ratio in the polymerization process,and varying operating conditions were investigated.The CLPIL-PWs were characterized by inductively coupled plasma(ICP)mass spectrometry,elemental analysis,scanning electron microscopy(SEM),Fourier transform infra-red(FTIR)spectroscopy,X-ray diffraction(XRD),^(13)C and^(31)P nuclear magnetic resonance(NMR)spectroscopy.The polydivinylbenzene-co-1-n-octyl-3-vinyl imidazole phosphotungstate(P(DVB-OVIm)PW)exhibited the highest DBT removal efficiency(99.9%)and remarkable recyclability,and could be reused eight times without reducing its activity.Finally,an extraction-free ODS mechanism is proposed.
基金supported by the Fund for Strengthening Technical Fields of Basic Plan(No.2021-JCJQ-JJ-0128)National Key R&D Program of China(No.2019YFF0302201)the National Key Laboratory of Materials Behavior and Evaluation Technology in the Space Environment Harbin Institute of Technology(No.6142910190203)。
文摘Electron spin resonance techniques were employed to investigate the effects of the absorbed dose and post-irradiation conditions on the evolution and decay of free-radicals in cross-linked polytetrafluoroethylene(XPTFE),induced byγ-ray radiation.Chain-end free-radicals,chain alkyl free-radicals,and tertiary alkyl free-radicals were detected when XPTFE was irradiated under Ar atmosphere.The corresponding peroxy free-radicals were formed upon exposure of irradiated XPTFE to air;the freeradicals concentration first increased linearly with increasing absorbed dose and then gradually saturated.The free-radicals yield under air atmosphere was greater than that under Ar,and the peroxy free-radicals were preserved for a relatively long time when irradiated XPTFE was stored under air atmosphere.The chain alkyl free-radicals may be converted to chain end free-radicals byβ-scission,while chain end free-radicals are more sensitive to oxygen than chain alkyl free-radicals.When the annealing temperature was raised above the a-transition temperature of XPTFE,the decay of the free-radicals was greatly affected and accelerated by the motion of the molecules over the long range.
文摘Cross-linked polyethylene (PEX) pipes used in hot water supply are required for high mechanical strength and high creep resistance at high temperature. Especially PEX-a pipes which are made by peroxide cross-linking have better performance, such as creep resistance and thermal shock resistance than the pipes made by the other cross-linking method. Because the PEX-a pipes indicate the higher cross-link degree as compared with the other PEX pipes. In this study, the PEX-a pipes which were mixed with several stabilizers were tested to evaluate the effects on cross-link degree and the oxygen induction time. And also they are evaluated with the chlorine aqueous solution by the performance of the long-term hydrostatic pressure test and the long-term hydro dynamic pressure test. As a result, it was found that the combination of antioxidants for PEX-a pipes plays an important role to prolong the oxygen induction time without inhibiting the cross-linking. From the results of the 1H pulsed NMR measurement over the melting point of polyethylene, it was found that each peroxide PEX pipe with different antioxidant combinations indicated the different proportion and crosslink density of cross-linked region, in addition, that these pipes had the effective structure of cross-linking for the hydrostatic and hydrodynamic pressure test with the chlorine aqueous solution. Therefore, it was considered to be useful results for studies of the stricture of cross-linking of polyethylene.
基金Coordenac¸a˜o de Aperfei-c¸oamento de Pessoal de Nı´vel Superior(CAPES)and Fundac¸a˜o de Amparo a`Pesquisa do Estado de Sa˜o Paulo(FAPESP)is acknowledged.F.M.C.thanks FAPESP for a M.Sci.scholarship.
文摘Cross-linked pectin/high amylose mixtures were evaluated as a new excipient for matrix tablets formulations,since the mixing of polymers and cross-linking reaction represent rational tools to reach materials with modulated and specific properties that meet specific therapeutic needs.Objective:In this work the influence of polymer ratio and cross-linking process on the swelling and the mechanism driving the drug release from swellable matrix tablets prepared with this excipient was investigated.Methods:Cross-linked samples were characterized by their micromeritic properties(size and shape,density,angle of repose and flow rate)and liquid uptake ability.Matrix tablets were evaluated according their physical properties and the drug release rates and mechanisms were also investigated.Results:Cross-linked samples demonstrated size homogeneity and irregular shape,with liquid uptake ability insensible to pH.Cross-linking process of samples allowed the control of drug release rates and the drug release mechanism was influenced by both polymer ratio and cross-linking process.The drug release of samples with minor proportion of pectin was driven by an anomalous transport and the increase of the pectin proportion contributed to the erosion of the matrix.Conclusion:The cross-linked mixtures of high amylose and pectin showed a suitable excipient for slowing the drug release rates.
基金Supported by National Natural Science Foundation of China (No.50872101,A3 Foresight Program-50821140308)National Basic Research Program of China (No.2009CB939704)a joint project of National Nature Science Foundation of China and Russian Foundation for Basic Research(No.NSFC-RFBR 51011120252)
文摘Cross-linked polystyrene/glass fiber composites were fabricated using cross-linked polystyrene (CLPS) as matrix and E-glass fiber as the reinforcement. Surfaces of E-glass fibers were modified by vinyl triethoxysilane (VTES), vinyl trimethoxysilane (VTMS) and γ-methacryloylpropyl trimethoxysilane (MPS). The treated glass fibers were analyzed by fourier transform infrared spectroscopy (FTIR). Dynamic mechanical thermal analysis (DMTA) and thermo-gravimetric analysis (TGA) were employed to investigate the effect of glass fibers surface modification on viscoelastic behavior and thermal properties. The morphology of fracture surfaces of various composites was observed by scanning electron microscopy (SEM). The results revealed that these coupling agents were connected to the surfaces of the fibers by chemical bonding. Dynamic mechanical properties as well as thermal stability of the composites were improved considerablely, but to varying degrees depending on the fiber modification. The diversities of improvement of properties were attributed to the different interfacial adhesion between CLPS matrix and the glass fibers.