期刊文献+
共找到7,166篇文章
< 1 2 250 >
每页显示 20 50 100
Improve Chinese Aspect Sentiment Quadruplet Prediction via Instruction Learning Based on Large Generate Models
1
作者 Zhaoliang Wu Yuewei Wu +2 位作者 Xiaoli Feng Jiajun Zou Fulian Yin 《Computers, Materials & Continua》 SCIE EI 2024年第3期3391-3412,共22页
Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target ... Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target sentences,including aspect terms,aspect categories,corresponding opinion terms,and sentiment polarity.However,most existing research has focused on English datasets.Consequently,while ASQP has seen significant progress in English,the Chinese ASQP task has remained relatively stagnant.Drawing inspiration from methods applied to English ASQP,we propose Chinese generation templates and employ prompt-based instruction learning to enhance the model’s understanding of the task,ultimately improving ASQP performance in the Chinese context.Ultimately,under the same pre-training model configuration,our approach achieved a 5.79%improvement in the F1 score compared to the previously leading method.Furthermore,when utilizing a larger model with reduced training parameters,the F1 score demonstrated an 8.14%enhancement.Additionally,we suggest a novel evaluation metric based on the characteristics of generative models,better-reflecting model generalization.Experimental results validate the effectiveness of our approach. 展开更多
关键词 ABSA ASQP LLMs sentiment analysis Chinese comments
下载PDF
Sentiment Analysis Using E-Commerce Review Keyword-Generated Image with a Hybrid Machine Learning-Based Model
2
作者 Jiawen Li Yuesheng Huang +3 位作者 Yayi Lu Leijun Wang Yongqi Ren Rongjun Chen 《Computers, Materials & Continua》 SCIE EI 2024年第7期1581-1599,共19页
In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in faci... In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in facing different shopping experience scenarios,this paper presents a sentiment analysis method that combines the ecommerce reviewkeyword-generated imagewith a hybrid machine learning-basedmodel,inwhich theWord2Vec-TextRank is used to extract keywords that act as the inputs for generating the related images by generative Artificial Intelligence(AI).Subsequently,a hybrid Convolutional Neural Network and Support Vector Machine(CNNSVM)model is applied for sentiment classification of those keyword-generated images.For method validation,the data randomly comprised of 5000 reviews from Amazon have been analyzed.With superior keyword extraction capability,the proposedmethod achieves impressive results on sentiment classification with a remarkable accuracy of up to 97.13%.Such performance demonstrates its advantages by using the text-to-image approach,providing a unique perspective for sentiment analysis in the e-commerce review data compared to the existing works.Thus,the proposed method enhances the reliability and insights of customer feedback surveys,which would also establish a novel direction in similar cases,such as social media monitoring and market trend research. 展开更多
关键词 sentiment analysis keyword-generated image machine learning Word2Vec-TextRank CNN-SVM
下载PDF
DeBERTa-GRU: Sentiment Analysis for Large Language Model
3
作者 Adel Assiri Abdu Gumaei +2 位作者 Faisal Mehmood Touqeer Abbas Sami Ullah 《Computers, Materials & Continua》 SCIE EI 2024年第6期4219-4236,共18页
Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whe... Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive,negative,neutral,or any other personal emotion to understand the sentiment context of the text.Sentiment analysis is essential in business and society because it impacts strategic decision-making.Sentiment analysis involves challenges due to lexical variation,an unlabeled dataset,and text distance correlations.The execution time increases due to the sequential processing of the sequence models.However,the calculation times for the Transformer models are reduced because of the parallel processing.This study uses a hybrid deep learning strategy to combine the strengths of the Transformer and Sequence models while ignoring their limitations.In particular,the proposed model integrates the Decoding-enhanced with Bidirectional Encoder Representations from Transformers(BERT)attention(DeBERTa)and the Gated Recurrent Unit(GRU)for sentiment analysis.Using the Decoding-enhanced BERT technique,the words are mapped into a compact,semantic word embedding space,and the Gated Recurrent Unit model can capture the distance contextual semantics correctly.The proposed hybrid model achieves F1-scores of 97%on the Twitter Large Language Model(LLM)dataset,which is much higher than the performance of new techniques. 展开更多
关键词 DeBERTa GRU Naive Bayes LSTM sentiment analysis large language model
下载PDF
Structured Multi-Head Attention Stock Index Prediction Method Based Adaptive Public Opinion Sentiment Vector
4
作者 Cheng Zhao Zhe Peng +2 位作者 Xuefeng Lan Yuefeng Cen Zuxin Wang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1503-1523,共21页
The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment ... The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment risk.The quantification of investment sentiment indicators and the persistent analysis of their impact has been a complex and significant area of research.In this paper,a structured multi-head attention stock index prediction method based adaptive public opinion sentiment vector is proposed.The proposedmethod utilizes an innovative approach to transform numerous investor comments on social platforms over time into public opinion sentiment vectors expressing complex sentiments.It then analyzes the continuous impact of these vectors on the market through the use of aggregating techniques and public opinion data via a structured multi-head attention mechanism.The experimental results demonstrate that the public opinion sentiment vector can provide more comprehensive feedback on market sentiment than traditional sentiment polarity analysis.Furthermore,the multi-head attention mechanism is shown to improve prediction accuracy through attention convergence on each type of input information separately.Themean absolute percentage error(MAPE)of the proposedmethod is 0.463%,a reduction of 0.294% compared to the benchmark attention algorithm.Additionally,the market backtesting results indicate that the return was 24.560%,an improvement of 8.202% compared to the benchmark algorithm.These results suggest that themarket trading strategy based on thismethod has the potential to improve trading profits. 展开更多
关键词 Public opinion sentiment structured multi-head attention stock index prediction deep learning
下载PDF
RUSAS: Roman Urdu Sentiment Analysis System
5
作者 Kazim Jawad Muhammad Ahmad +1 位作者 Majdah Alvi Muhammad Bux Alvi 《Computers, Materials & Continua》 SCIE EI 2024年第4期1463-1480,共18页
Sentiment analysis, the meta field of Natural Language Processing (NLP), attempts to analyze and identify thesentiments in the opinionated text data. People share their judgments, reactions, and feedback on the intern... Sentiment analysis, the meta field of Natural Language Processing (NLP), attempts to analyze and identify thesentiments in the opinionated text data. People share their judgments, reactions, and feedback on the internetusing various languages. Urdu is one of them, and it is frequently used worldwide. Urdu-speaking people prefer tocommunicate on social media in Roman Urdu (RU), an English scripting style with the Urdu language dialect.Researchers have developed versatile lexical resources for features-rich comprehensive languages, but limitedlinguistic resources are available to facilitate the sentiment classification of Roman Urdu. This effort encompassesextracting subjective expressions in Roman Urdu and determining the implied opinionated text polarity. Theprimary sources of the dataset are Daraz (an e-commerce platform), Google Maps, and the manual effort. Thecontributions of this study include a Bilingual Roman Urdu Language Detector (BRULD) and a Roman UrduSpelling Checker (RUSC). These integrated modules accept the user input, detect the text language, correct thespellings, categorize the sentiments, and return the input sentence’s orientation with a sentiment intensity score.The developed system gains strength with each input experience gradually. The results show that the languagedetector gives an accuracy of 97.1% on a close domain dataset, with an overall sentiment classification accuracy of94.3%. 展开更多
关键词 Roman Urdu sentiment analysis Roman Urdu language detector Roman Urdu spelling checker FLASK
下载PDF
Spatial-temporal Patterns of Urban Parks’Effects on the Sentiments and Their Associated Factors Based on Social Media Data——a Case Study in Beijing
6
作者 YUAN Yuting WANG Juan +3 位作者 WEI Yali ZHU Yanrong SHI Changsheng MENG Bin 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第2期95-110,共16页
As the pivotal green space,urban parks play an important role in urban residents’daily activities.Thy can not only bring people physical health,but also can be more likely to elicit positive sentiment to those who vi... As the pivotal green space,urban parks play an important role in urban residents’daily activities.Thy can not only bring people physical health,but also can be more likely to elicit positive sentiment to those who visit them.Recently,social media big data has provided new data sources for sentiment analysis.However,there was limited researches that explored the connection between urban parks and individual’s sentiments.Therefore,this study firstly employed a pre-trained language model(BERT,Bidirectional Encoder Representations from Transformers)to calculate sentiment scores based on social media data.Secondly,this study analysed the relationship between urban parks and individual’s sentiment from both spatial and temporal perspectives.Finally,by utilizing structural equation model(SEM),we identified 13 factors and analyzed its degree of the influence.The research findings are listed as below:①It confirmed that individuals generally experienced positive sentiment with high sentiment scores in the majority of urban parks;②The urban park type showed an influence on sentiment scores.In this study,higher sentiment scores observed in Eco-parks,comprehensive parks,and historical parks;③The urban parks level showed low impact on sentiment scores.With distinctions observed mainly at level-3 and level-4;④Compared to internal factors in parks,the external infrastructure surround them exerted more significant impact on sentiment scores.For instance,number of bus and subway stations around urban parks led to higher sentiment scores,while scenic spots and restaurants had inverse result.This study provided a novel method to quantify the services of various urban parks,which can be served as inspiration for similar studies in other cities and countries,enhancing their park planning and management strategies. 展开更多
关键词 urban parks sentiment analysis social media data SEM BEIJING
下载PDF
A Robust Framework for Multimodal Sentiment Analysis with Noisy Labels Generated from Distributed Data Annotation
7
作者 Kai Jiang Bin Cao Jing Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2965-2984,共20页
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha... Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines. 展开更多
关键词 Distributed data collection multimodal sentiment analysis meta learning learn with noisy labels
下载PDF
Aspect-Level Sentiment Analysis Based on Deep Learning
8
作者 Mengqi Zhang Jiazhao Chai +2 位作者 Jianxiang Cao Jialing Ji Tong Yi 《Computers, Materials & Continua》 SCIE EI 2024年第3期3743-3762,共20页
In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also gr... In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also greatly improve the performance of models.However,previous studies did not take into account the relationship between user feature extraction and contextual terms.To address this issue,we use data feature extraction and deep learning combined to develop an aspect-level sentiment analysis method.To be specific,we design user comment feature extraction(UCFE)to distill salient features from users’historical comments and transform them into representative user feature vectors.Then,the aspect-sentence graph convolutional neural network(ASGCN)is used to incorporate innovative techniques for calculating adjacency matrices;meanwhile,ASGCN emphasizes capturing nuanced semantics within relationships among aspect words and syntactic dependency types.Afterward,three embedding methods are devised to embed the user feature vector into the ASGCN model.The empirical validations verify the effectiveness of these models,consistently surpassing conventional benchmarks and reaffirming the indispensable role of deep learning in advancing sentiment analysis methodologies. 展开更多
关键词 Aspect-level sentiment analysis deep learning graph convolutional neural network user features syntactic dependency tree
下载PDF
Artificial Intelligence-Based Sentiment Analysis of Dynamic Message Signs that Report Fatality Numbers Using Connected Vehicle Data
9
作者 Dorcas O. Okaidjah Jonathan Wood Christopher M. Day 《Journal of Transportation Technologies》 2024年第4期590-606,共17页
This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influe... This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influencing driver behavior and assisting transportation agencies in achieving safe and efficient traffic movement. However, the psychological and behavioral effects of displaying fatality numbers on DMS remain poorly understood;hence, it is important to know the potential impacts of displaying such messages. The Iowa Department of Transportation displays the number of fatalities on a first screen, followed by a supplemental message hoping to promote safe driving;an example is “19 TRAFFIC DEATHS THIS YEAR IF YOU HAVE A SUPER BOWL DON’T DRIVE HIGH.” We employ natural language processing to decode the sentiment and undertone of the supplementary message and investigate how they influence driving speeds. According to the results of a mixed effect model, drivers reduced speeds marginally upon encountering DMS fatality text with a positive sentiment with a neutral undertone. This category had the largest associated amount of speed reduction, while messages with negative sentiment with a negative undertone had the second largest amount of speed reduction, greater than other combinations, including positive sentiment with a positive undertone. 展开更多
关键词 Intelligent Transportation System sentiment Analysis Dynamic Message Signs Large Language Models Traffic Safety Artificial Intelligence
下载PDF
Sentiment Analysis of Low-Resource Language Literature Using Data Processing and Deep Learning
10
作者 Aizaz Ali Maqbool Khan +2 位作者 Khalil Khan Rehan Ullah Khan Abdulrahman Aloraini 《Computers, Materials & Continua》 SCIE EI 2024年第4期713-733,共21页
Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentime... Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language. 展开更多
关键词 Urdu sentiment analysis convolutional neural networks recurrent neural network deep learning natural language processing neural networks
下载PDF
GP‐FMLNet:A feature matrix learning network enhanced by glyph and phonetic information for Chinese sentiment analysis
11
作者 Jing Li Dezheng Zhang +2 位作者 Yonghong Xie Aziguli Wulamu Yao Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期960-972,共13页
Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a sin... Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms. 展开更多
关键词 aspect‐level sentiment analysis deep learning feature extraction glyph and phonetic feature matrix compound learning
下载PDF
Analysis of Public Sentiment regarding COVID-19 Vaccines on the Social Media Platform Reddit
12
作者 Lucien Dikla Ngueleo Jules Pagna Disso +2 位作者 Armel Ayimdji Tekemetieu Justin Moskolaï Ngossaha Michael Nana Kameni 《Journal of Computer and Communications》 2024年第2期80-108,共29页
This study undertakes a thorough analysis of the sentiment within the r/Corona-virus subreddit community regarding COVID-19 vaccines on Reddit. We meticulously collected and processed 34,768 comments, spanning from No... This study undertakes a thorough analysis of the sentiment within the r/Corona-virus subreddit community regarding COVID-19 vaccines on Reddit. We meticulously collected and processed 34,768 comments, spanning from November 20, 2020, to January 17, 2021, using sentiment calculation methods such as TextBlob and Twitter-RoBERTa-Base-sentiment to categorize comments into positive, negative, or neutral sentiments. The methodology involved the use of Count Vectorizer as a vectorization technique and the implementation of advanced ensemble algorithms like XGBoost and Random Forest, achieving an accuracy of approximately 80%. Furthermore, through the Dirichlet latent allocation, we identified 23 distinct reasons for vaccine distrust among negative comments. These findings are crucial for understanding the community’s attitudes towards vaccination and can guide targeted public health messaging. Our study not only provides insights into public opinion during a critical health crisis, but also demonstrates the effectiveness of combining natural language processing tools and ensemble algorithms in sentiment analysis. 展开更多
关键词 COVID-19 Vaccine TextBlob Twitter-RoBERTa-Base-sentiment sentiment Analysis Latent Dirichlet Allocation
下载PDF
Aspect-Level Sentiment Analysis Incorporating Semantic and Syntactic Information
13
作者 Jiachen Yang Yegang Li +2 位作者 Hao Zhang Junpeng Hu Rujiang Bai 《Journal of Computer and Communications》 2024年第1期191-207,共17页
Aiming at the problem that existing models in aspect-level sentiment analysis cannot fully and effectively utilize sentence semantic and syntactic structure information, this paper proposes a graph neural network-base... Aiming at the problem that existing models in aspect-level sentiment analysis cannot fully and effectively utilize sentence semantic and syntactic structure information, this paper proposes a graph neural network-based aspect-level sentiment classification model. Self-attention, aspectual word multi-head attention and dependent syntactic relations are fused and the node representations are enhanced with graph convolutional networks to enable the model to fully learn the global semantic and syntactic structural information of sentences. Experimental results show that the model performs well on three public benchmark datasets Rest14, Lap14, and Twitter, improving the accuracy of sentiment classification. 展开更多
关键词 Aspect-Level sentiment Analysis Attentional Mechanisms Dependent Syntactic Trees Graph Convolutional Neural Networks
下载PDF
On the Sentimentalism in Virginia Wool's Mrs. Dalloway
14
作者 高悦 孙玲 《商情》 2014年第25期280-280,共1页
关键词 摘要 编辑部 编辑工作 读者
下载PDF
Mutually Enhancing Community Detection and Sentiment Analysis on Twitter Networks 被引量:5
15
作者 William Deitrick Wei Hu 《Journal of Data Analysis and Information Processing》 2013年第3期19-29,共11页
The burgeoning use of Web 2.0-powered social media in recent years has inspired numerous studies on the content and composition of online social networks (OSNs). Many methods of harvesting useful information from soci... The burgeoning use of Web 2.0-powered social media in recent years has inspired numerous studies on the content and composition of online social networks (OSNs). Many methods of harvesting useful information from social networks’ immense amounts of user-generated data have been successfully applied to such real-world topics as politics and marketing, to name just a few. This study presents a novel twist on two popular techniques for studying OSNs: community detection and sentiment analysis. Using sentiment classification to enhance community detection and community partitions to permit more in-depth analysis of sentiment data, these two techniques are brought together to analyze four networks from the Twitter OSN. The Twitter networks used for this study are extracted from four accounts related to Microsoft Corporation, and together encompass more than 60,000 users and 2 million tweets collected over a period of 32 days. By combining community detection and sentiment analysis, modularity values were increased for the community partitions detected in three of the four networks studied. Furthermore, data collected during the community detection process enabled more granular, community-level sentiment analysis on a specific topic referenced by users in the dataset. 展开更多
关键词 COMMUNITY Detection sentiment ANALYSIS TWITTER Online Social NETWORKS MODULARITY Community-Level sentiment ANALYSIS
下载PDF
Chinese micro-blog sentiment classification through a novel hybrid learning model 被引量:2
16
作者 LI Fang-fang WANG Huan-ting +3 位作者 ZHAO Rong-chang LIU Xi-yao WANG Yan-zhen ZOU Bei-ji 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2322-2330,共9页
With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are d... With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are different in language syntax, semantics and pragmatics, sentiment classification methods that are effective for English twitter may fail on Chinese micro-blog. In addition, the colloquialism and conciseness of short Chinese texts introduces additional challenges to sentiment classification. In this work, a novel hybrid learning model was proposed for sentiment classification of Chinese micro-blogs, which included two stages. In the first stage, emotional scores were calculated over the whole dataset by utilizing an improved Chinese-oriented sentiment dictionary classification method. Data with extremely high or low scores were directly labeled. In the second stage, the remaining data were labeled by using an integrated classification method based on sentiment dictionary, support vector machine(SVM) and k-nearest neighbor(KNN). An improved feature selection method was adopted to enhance the discriminative power of the selected features. The two-stage hybrid framework made the proposed method effective for sentiment classification of Chinese micro-blogs. Experiments on the COAE2014(Chinese Opinion Analysis Evaluation 2014) dataset show that the proposed method outperforms other schemes. 展开更多
关键词 CHINESE micro-blog SHORT TEXT HYBRID LEARNING sentiment classification
下载PDF
Convolutional Multi-Head Self-Attention on Memory for Aspect Sentiment Classification 被引量:6
17
作者 Yaojie Zhang Bing Xu Tiejun Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期1038-1044,共7页
This paper presents a method for aspect based sentiment classification tasks, named convolutional multi-head self-attention memory network(CMA-Mem Net). This is an improved model based on memory networks, and makes it... This paper presents a method for aspect based sentiment classification tasks, named convolutional multi-head self-attention memory network(CMA-Mem Net). This is an improved model based on memory networks, and makes it possible to extract more rich and complex semantic information from sequences and aspects. In order to fix the memory network’s inability to capture context-related information on a word-level,we propose utilizing convolution to capture n-gram grammatical information. We use multi-head self-attention to make up for the problem where the memory network ignores the semantic information of the sequence itself. Meanwhile, unlike most recurrent neural network(RNN) long short term memory(LSTM), gated recurrent unit(GRU) models, we retain the parallelism of the network. We experiment on the open datasets Sem Eval-2014 Task 4 and Sem Eval-2016 Task 6. Compared with some popular baseline methods, our model performs excellently. 展开更多
关键词 Aspect sentiment classification deep learning memory network sentiment analysis(SA)
下载PDF
Text Sentiment Analysis Using Frequency-Based Vigorous Features 被引量:2
18
作者 Abdul Razzaq Muhammad Asim +4 位作者 Zulqrnain Ali Salman Qadri Imran Mumtaz Dost Muhammad Khan Qasim Niaz 《China Communications》 SCIE CSCD 2019年第12期145-153,共9页
Sentiment Analysis, an un-abating research area in text mining, requires a computational method for extracting useful information from text. In recent days, social media has become a really rich source to get informat... Sentiment Analysis, an un-abating research area in text mining, requires a computational method for extracting useful information from text. In recent days, social media has become a really rich source to get information about the behavioral state of people(opinion) through reviews and comments. Numerous techniques have been aimed to analyze the sentiment of the text, however, they were unable to come up to the complexity of the sentiments. The complexity requires novel approach for deep analysis of sentiments for more accurate prediction. This research presents a three-step Sentiment Analysis and Prediction(SAP) solution of Text Trend through K-Nearest Neighbor(KNN). At first, sentences are transformed into tokens and stop words are removed. Secondly, polarity of the sentence, paragraph and text is calculated through contributing weighted words, intensity clauses and sentiment shifters. The resulting features extracted in this step played significant role to improve the results. Finally, the trend of the input text has been predicted using KNN classifier based on extracted features. The training and testing of the model has been performed on publically available datasets of twitter and movie reviews. Experiments results illustrated the satisfactory improvement as compared to existing solutions. In addition, GUI(Hello World) based text analysis framework has been designed to perform the text analytics. 展开更多
关键词 text mining sentiment analysis sentiment shifters KNN
下载PDF
Sentiment Analysis of Japanese Tourism Online Reviews 被引量:2
19
作者 Chuanming Yu Xingyu Zhu +2 位作者 Bolin Feng Lin Cai Lu An 《Journal of Data and Information Science》 CSCD 2019年第1期89-113,共25页
Purpose: Online reviews on tourism attractions provide important references for potential tourists to choose tourism spots. The main goal of this study is conducting sentiment analysis to facilitate users comprehendin... Purpose: Online reviews on tourism attractions provide important references for potential tourists to choose tourism spots. The main goal of this study is conducting sentiment analysis to facilitate users comprehending the large scale of the reviews, based on the comments about Chinese attractions from Japanese tourism website 4 Travel.Design/methodology/approach: Different statistics-and rule-based methods are used to analyze the sentiment of the reviews. Three groups of novel statistics-based methods combining feature selection functions and the traditional term frequency-inverse document frequency(TF-IDF) method are proposed. We also make seven groups of different rulesbased methods. The macro-average and micro-average values for the best classification results of the methods are calculated respectively and the performance of the methods are shown.Findings: We compare the statistics-based and rule-based methods separately and compare the overall performance of the two method. According to the results, it is concluded that the combination of feature selection functions and weightings can strongly improve the overall performance. The emotional vocabulary in the field of tourism(EVT), kaomojis, negative and transitional words can notably improve the performance in all of three categories. The rule-based methods outperform the statistics-based ones with a narrow advantage.Research limitation: Two limitations can be addressed: 1) the empirical studies to verify the validity of the proposed methods are only conducted on Japanese languages; and 2) the deep learning technology is not been incorporated in the methods.Practical implications: The results help to elucidate the intrinsic characteristics of the Japanese language and the influence on sentiment analysis. These findings also provide practical usage guidelines within the field of sentiment analysis of Japanese online tourism reviews.Originality/value: Our research is of practicability. Currently, there are no studies that focus on the sentiment analysis of Japanese reviews about Chinese attractions. 展开更多
关键词 sentiment analysis JAPANESE REVIEWS RULE-BASED METHODS Statistics-based METHODS TOURISM REVIEWS
下载PDF
COVID-19 Public Sentiment Insights: A Text Mining Approach to the Gulf Countries 被引量:5
20
作者 Saleh Albahli Ahmad Algsham +5 位作者 Shamsulhaq Aeraj Muath Alsaeed Muath Alrashed Hafiz Tayyab Rauf Muhammad Arif Mazin Abed Mohammed 《Computers, Materials & Continua》 SCIE EI 2021年第5期1613-1627,共15页
Social media has been the primary source of information from mainstream news agencies due to the large number of users posting their feedback.The COVID-19 outbreak did not only bring a virus with it but it also brough... Social media has been the primary source of information from mainstream news agencies due to the large number of users posting their feedback.The COVID-19 outbreak did not only bring a virus with it but it also brought fear and uncertainty along with inaccurate and misinformation spread on social media platforms.This phenomenon caused a state of panic among people.Different studies were conducted to stop the spread of fake news to help people cope with the situation.In this paper,a semantic analysis of three levels(negative,neutral,and positive)is used to gauge the feelings of Gulf countries towards the pandemic and the lockdown,on basis of a Twitter dataset of 2 months,using Natural Language Processing(NLP)techniques.It has been observed that there are no mixed emotions during the pandemic as it started with a neutral reaction,then positive sentiments,and lastly,peaks of negative reactions.The results show that the feelings of the Gulf countries towards the pandemic depict approximately a 50.5%neutral,a 31.2%positive,and an 18.3%negative sentiment overall.The study can be useful for government authorities to learn the discrepancies between different populations from diverse areas to overcome the COVID-19 spread accordingly. 展开更多
关键词 COVID-19 sentiment analysis natural language processing TWITTER social data mining sentiment polarity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部