In recent years,cross-modal hash retrieval has become a popular research field because of its advantages of high efficiency and low storage.Cross-modal retrieval technology can be applied to search engines,crossmodalm...In recent years,cross-modal hash retrieval has become a popular research field because of its advantages of high efficiency and low storage.Cross-modal retrieval technology can be applied to search engines,crossmodalmedical processing,etc.The existing main method is to use amulti-label matching paradigm to finish the retrieval tasks.However,such methods do not use fine-grained information in the multi-modal data,which may lead to suboptimal results.To avoid cross-modal matching turning into label matching,this paper proposes an end-to-end fine-grained cross-modal hash retrieval method,which can focus more on the fine-grained semantic information of multi-modal data.First,the method refines the image features and no longer uses multiple labels to represent text features but uses BERT for processing.Second,this method uses the inference capabilities of the transformer encoder to generate global fine-grained features.Finally,in order to better judge the effect of the fine-grained model,this paper uses the datasets in the image text matching field instead of the traditional label-matching datasets.This article experiment on Microsoft COCO(MS-COCO)and Flickr30K datasets and compare it with the previous classicalmethods.The experimental results show that this method can obtain more advanced results in the cross-modal hash retrieval field.展开更多
In recent years,the development of deep learning has further improved hash retrieval technology.Most of the existing hashing methods currently use Convolutional Neural Networks(CNNs)and Recurrent Neural Networks(RNNs)...In recent years,the development of deep learning has further improved hash retrieval technology.Most of the existing hashing methods currently use Convolutional Neural Networks(CNNs)and Recurrent Neural Networks(RNNs)to process image and text information,respectively.This makes images or texts subject to local constraints,and inherent label matching cannot capture finegrained information,often leading to suboptimal results.Driven by the development of the transformer model,we propose a framework called ViT2CMH mainly based on the Vision Transformer to handle deep Cross-modal Hashing tasks rather than CNNs or RNNs.Specifically,we use a BERT network to extract text features and use the vision transformer as the image network of the model.Finally,the features are transformed into hash codes for efficient and fast retrieval.We conduct extensive experiments on Microsoft COCO(MS-COCO)and Flickr30K,comparing with baselines of some hashing methods and image-text matching methods,showing that our method has better performance.展开更多
Background Cross-modal retrieval has attracted widespread attention in many cross-media similarity search applications,particularly image-text retrieval in the fields of computer vision and natural language processing...Background Cross-modal retrieval has attracted widespread attention in many cross-media similarity search applications,particularly image-text retrieval in the fields of computer vision and natural language processing.Recently,visual and semantic embedding(VSE)learning has shown promising improvements in image text retrieval tasks.Most existing VSE models employ two unrelated encoders to extract features and then use complex methods to contextualize and aggregate these features into holistic embeddings.Despite recent advances,existing approaches still suffer from two limitations:(1)without considering intermediate interactions and adequate alignment between different modalities,these models cannot guarantee the discriminative ability of representations;and(2)existing feature aggregators are susceptible to certain noisy regions,which may lead to unreasonable pooling coefficients and affect the quality of the final aggregated features.Methods To address these challenges,we propose a novel cross-modal retrieval model containing a well-designed alignment module and a novel multimodal fusion encoder that aims to learn the adequate alignment and interaction of aggregated features to effectively bridge the modality gap.Results Experiments on the Microsoft COCO and Flickr30k datasets demonstrated the superiority of our model over state-of-the-art methods.展开更多
In the era of big data rich inWe Media,the single mode retrieval system has been unable to meet people’s demand for information retrieval.This paper proposes a new solution to the problem of feature extraction and un...In the era of big data rich inWe Media,the single mode retrieval system has been unable to meet people’s demand for information retrieval.This paper proposes a new solution to the problem of feature extraction and unified mapping of different modes:A Cross-Modal Hashing retrieval algorithm based on Deep Residual Network(CMHR-DRN).The model construction is divided into two stages:The first stage is the feature extraction of different modal data,including the use of Deep Residual Network(DRN)to extract the image features,using the method of combining TF-IDF with the full connection network to extract the text features,and the obtained image and text features used as the input of the second stage.In the second stage,the image and text features are mapped into Hash functions by supervised learning,and the image and text features are mapped to the common binary Hamming space.In the process of mapping,the distance measurement of the original distance measurement and the common feature space are kept unchanged as far as possible to improve the accuracy of Cross-Modal Retrieval.In training the model,adaptive moment estimation(Adam)is used to calculate the adaptive learning rate of each parameter,and the stochastic gradient descent(SGD)is calculated to obtain the minimum loss function.The whole training process is completed on Caffe deep learning framework.Experiments show that the proposed algorithm CMHR-DRN based on Deep Residual Network has better retrieval performance and stronger advantages than other Cross-Modal algorithms CMFH,CMDN and CMSSH.展开更多
Existing speech retrieval systems are frequently confronted with expanding volumes of speech data.The dynamic updating strategy applied to construct the index can timely process to add or remove unnecessary speech dat...Existing speech retrieval systems are frequently confronted with expanding volumes of speech data.The dynamic updating strategy applied to construct the index can timely process to add or remove unnecessary speech data to meet users’real-time retrieval requirements.This study proposes an efficient method for retrieving encryption speech,using unsupervised deep hashing and B+ tree dynamic index,which avoid privacy leak-age of speech data and enhance the accuracy and efficiency of retrieval.The cloud’s encryption speech library is constructed by using the multi-threaded Dijk-Gentry-Halevi-Vaikuntanathan(DGHV)Fully Homomorphic Encryption(FHE)technique,which encrypts the original speech.In addition,this research employs Residual Neural Network18-Gated Recurrent Unit(ResNet18-GRU),which is used to learn the compact binary hash codes,store binary hash codes in the designed B+tree index table,and create a mapping relation of one to one between the binary hash codes and the corresponding encrypted speech.External B+tree index technology is applied to achieve dynamic index updating of the B+tree index table,thereby satisfying users’needs for real-time retrieval.The experimental results on THCHS-30 and TIMIT showed that the retrieval accuracy of the proposed method is more than 95.84%compared to the existing unsupervised hashing methods.The retrieval efficiency is greatly improved.Compared to the method of using hash index tables,and the speech data’s security is effectively guaranteed.展开更多
The utilization of digital picture search and retrieval has grown substantially in numerous fields for different purposes during the last decade,owing to the continuing advances in image processing and computer vision...The utilization of digital picture search and retrieval has grown substantially in numerous fields for different purposes during the last decade,owing to the continuing advances in image processing and computer vision approaches.In multiple real-life applications,for example,social media,content-based face picture retrieval is a well-invested technique for large-scale databases,where there is a significant necessity for reliable retrieval capabilities enabling quick search in a vast number of pictures.Humans widely employ faces for recognizing and identifying people.Thus,face recognition through formal or personal pictures is increasingly used in various real-life applications,such as helping crime investigators retrieve matching images from face image databases to identify victims and criminals.However,such face image retrieval becomes more challenging in large-scale databases,where traditional vision-based face analysis requires ample additional storage space than the raw face images already occupied to store extracted lengthy feature vectors and takes much longer to process and match thousands of face images.This work mainly contributes to enhancing face image retrieval performance in large-scale databases using hash codes inferred by locality-sensitive hashing(LSH)for facial hard and soft biometrics as(Hard BioHash)and(Soft BioHash),respectively,to be used as a search input for retrieving the top-k matching faces.Moreover,we propose the multi-biometric score-level fusion of both face hard and soft BioHashes(Hard-Soft BioHash Fusion)for further augmented face image retrieval.The experimental outcomes applied on the Labeled Faces in the Wild(LFW)dataset and the related attributes dataset(LFW-attributes),demonstrate that the retrieval performance of the suggested fusion approach(Hard-Soft BioHash Fusion)significantly improved the retrieval performance compared to solely using Hard BioHash or Soft BioHash in isolation,where the suggested method provides an augmented accuracy of 87%when executed on 1000 specimens and 77%on 5743 samples.These results remarkably outperform the results of the Hard BioHash method by(50%on the 1000 samples and 30%on the 5743 samples),and the Soft BioHash method by(78%on the 1000 samples and 63%on the 5743 samples).展开更多
To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security,retrieval efficiency,and retrieval accuracy.This research suggests a searchable encryption and deep ha...To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security,retrieval efficiency,and retrieval accuracy.This research suggests a searchable encryption and deep hashing-based secure image retrieval technique that extracts more expressive image features and constructs a secure,searchable encryption scheme.First,a deep learning framework based on residual network and transfer learn-ing model is designed to extract more representative image deep features.Secondly,the central similarity is used to quantify and construct the deep hash sequence of features.The Paillier homomorphic encryption encrypts the deep hash sequence to build a high-security and low-complexity searchable index.Finally,according to the additive homomorphic property of Paillier homomorphic encryption,a similarity measurement method suitable for com-puting in the retrieval system’s security is ensured by the encrypted domain.The experimental results,which were obtained on Web Image Database from the National University of Singapore(NUS-WIDE),Microsoft Common Objects in Context(MS COCO),and ImageNet data sets,demonstrate the system’s robust security and precise retrieval,the proposed scheme can achieve efficient image retrieval without revealing user privacy.The retrieval accuracy is improved by at least 37%compared to traditional hashing schemes.At the same time,the retrieval time is saved by at least 9.7%compared to the latest deep hashing schemes.展开更多
Lung medical image retrieval based on content similarity plays an important role in computer-aided diagnosis of lung cancer.In recent years,binary hashing has become a hot topic in this field due to its compressed sto...Lung medical image retrieval based on content similarity plays an important role in computer-aided diagnosis of lung cancer.In recent years,binary hashing has become a hot topic in this field due to its compressed storage and fast query speed.Traditional hashing methods often rely on highdimensional features based hand-crafted methods,which might not be optimally compatible with lung nodule images.Also,different hashing bits contribute to the image retrieval differently,and therefore treating the hashing bits equally affects the retrieval accuracy.Hence,an image retrieval method of lung nodule images is proposed with the basis on convolutional neural networks and hashing.First,apre-trained and fine-tuned convolutional neural network is employed to learn multilevel semantic features of the lung nodules.Principal components analysis is utilized to remove redundant information and preserve informative semantic features of the lung nodules.Second,the proposed method relies on nine sign labels of lung nodules for the training set,and the semantic feature is combined to construct hashing functions.Finally,returned lung nodule images can be easily ranked with the query-adaptive search method based on weighted Hamming distance.Extensive experiments and evaluations on the dataset demonstrate that the proposed method can significantly improve the expression ability of lung nodule images,which further validates the effectiveness of the proposed method.展开更多
Image retrieval has become more and more important because of the explosive growth of images on the Internet.Traditional image retrieval methods have limited image retrieval performance due to the poor image expressio...Image retrieval has become more and more important because of the explosive growth of images on the Internet.Traditional image retrieval methods have limited image retrieval performance due to the poor image expression abhility of visual feature and high dimension of feature.Hashing is a widely-used method for Approximate Nearest Neighbor(ANN)search due to its rapidity and timeliness.Meanwhile,Convolutional Neural Networks(CNNs)have strong discriminative characteristics which are used for image classification.In this paper,we propose a CNN architecture based on improved deep supervised hashing(IDSH)method,by which the binary compact codes can be generated directly.The main contributions of this paper are as follows:first,we add a Batch Normalization(BN)layer before each activation layer to prevent the gradient from vanishing and improve the training speed;secondly,we use Divide-and-Encode Module to map image features to approximate hash codes;finally,we adopt center loss to optimize training.Extensive experimental results on four large-scale datasets:MNIST,CIFAR-10,NUS-WIDE and SVHN demonstrate the effectiveness of the proposed method compared with other state-of-the-art hashing methods.展开更多
In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to descr...In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to describe image information.The advantages of hash method in reducing data storage and improving efficiency also make us study how to effectively apply to large-scale image retrieval.In this paper,a hash algorithm of multi-index image retrieval based on multi-view feature coding is proposed.By learning the data correlation between different views,this algorithm uses multi-view data with deeper level image semantics to achieve better retrieval results.This algorithm uses a quantitative hash method to generate binary sequences,and uses the hash code generated by the association features to construct database inverted index files,so as to reduce the memory burden and promote the efficient matching.In order to reduce the matching error of hash code and ensure the retrieval accuracy,this algorithm uses inverted multi-index structure instead of single-index structure.Compared with other advanced image retrieval method,this method has better retrieval performance.展开更多
Convolutional Neural Networks (CNN) has been a very popular area in large scale data processing and many works have demonstrate that CNN is a very promising tool in many field, e.g., image classification and image ret...Convolutional Neural Networks (CNN) has been a very popular area in large scale data processing and many works have demonstrate that CNN is a very promising tool in many field, e.g., image classification and image retrieval. Theoretically, CNN features can become better and better with the increase of CNN layers. But on the other side more layers can dramatically increase the computational cost on the same condition of other devices. In addition to CNN features, how to dig out the potential information contained in the features is also an important aspect. In this paper, we propose a novel approach utilize deep CNN to extract image features and then introduce a Regularized Locality Preserving Indexing (RLPI) method which can make features more differentiated through learning a new space of the data space. First, we apply deep networks (VGG-net) to extract image features and then introduce Regularized Locality Preserving Indexing (RLPI) method to train a model. Finally, the new feature space can be generated through this model and then can be used to image retrieval.展开更多
Cross-modal retrieval tries to achieve mutual retrieval between modalities by establishing consistent alignment for different modal data.Currently,many cross-modal retrieval methods have been proposed and have achieve...Cross-modal retrieval tries to achieve mutual retrieval between modalities by establishing consistent alignment for different modal data.Currently,many cross-modal retrieval methods have been proposed and have achieved excellent results;however,these are trained with clean cross-modal pairs,which are semantically matched but costly,compared with easily available data with noise alignment(i.e.,paired but mismatched in semantics).When training these methods with noise-aligned data,the performance degrades dramatically.Therefore,we propose a robust cross-modal retrieval with alignment refurbishment(RCAR),which significantly reduces the impact of noise on the model.Specifically,RCAR first conducts multi-task learning to slow down the overfitting to the noise to make data separable.Then,RCAR uses a two-component beta-mixture model to divide them into clean and noise alignments and refurbishes the label according to the posterior probability of the noise-alignment component.In addition,we define partial and complete noises in the noise-alignment paradigm.Experimental results show that,compared with the popular cross-modal retrieval methods,RCAR achieves more robust performance with both types of noise.展开更多
基金This work was partially supported by Chongqing Natural Science Foundation of China(Grant No.CSTB2022NSCQ-MSX1417)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K202200513)+2 种基金Chongqing Normal University Fund(Grant No.22XLB003)Chongqing Education Science Planning Project(Grant No.2021-GX-320)Humanities and Social Sciences Project of Chongqing Education Commission of China(Grant No.22SKGH100).
文摘In recent years,cross-modal hash retrieval has become a popular research field because of its advantages of high efficiency and low storage.Cross-modal retrieval technology can be applied to search engines,crossmodalmedical processing,etc.The existing main method is to use amulti-label matching paradigm to finish the retrieval tasks.However,such methods do not use fine-grained information in the multi-modal data,which may lead to suboptimal results.To avoid cross-modal matching turning into label matching,this paper proposes an end-to-end fine-grained cross-modal hash retrieval method,which can focus more on the fine-grained semantic information of multi-modal data.First,the method refines the image features and no longer uses multiple labels to represent text features but uses BERT for processing.Second,this method uses the inference capabilities of the transformer encoder to generate global fine-grained features.Finally,in order to better judge the effect of the fine-grained model,this paper uses the datasets in the image text matching field instead of the traditional label-matching datasets.This article experiment on Microsoft COCO(MS-COCO)and Flickr30K datasets and compare it with the previous classicalmethods.The experimental results show that this method can obtain more advanced results in the cross-modal hash retrieval field.
基金This work was partially supported by Science and Technology Project of Chongqing Education Commission of China(KJZD-K202200513)National Natural Science Foundation of China(61370205)+1 种基金Chongqing Normal University Fund(22XLB003)Chongqing Education Science Planning Project(2021-GX-320).
文摘In recent years,the development of deep learning has further improved hash retrieval technology.Most of the existing hashing methods currently use Convolutional Neural Networks(CNNs)and Recurrent Neural Networks(RNNs)to process image and text information,respectively.This makes images or texts subject to local constraints,and inherent label matching cannot capture finegrained information,often leading to suboptimal results.Driven by the development of the transformer model,we propose a framework called ViT2CMH mainly based on the Vision Transformer to handle deep Cross-modal Hashing tasks rather than CNNs or RNNs.Specifically,we use a BERT network to extract text features and use the vision transformer as the image network of the model.Finally,the features are transformed into hash codes for efficient and fast retrieval.We conduct extensive experiments on Microsoft COCO(MS-COCO)and Flickr30K,comparing with baselines of some hashing methods and image-text matching methods,showing that our method has better performance.
基金Supported by the National Natural Science Foundation of China (62172109,62072118)the National Science Foundation of Guangdong Province (2022A1515010322)+1 种基金the Guangdong Basic and Applied Basic Research Foundation (2021B1515120010)the Huangpu International Sci&Tech Cooperation foundation of Guangzhou (2021GH12)。
文摘Background Cross-modal retrieval has attracted widespread attention in many cross-media similarity search applications,particularly image-text retrieval in the fields of computer vision and natural language processing.Recently,visual and semantic embedding(VSE)learning has shown promising improvements in image text retrieval tasks.Most existing VSE models employ two unrelated encoders to extract features and then use complex methods to contextualize and aggregate these features into holistic embeddings.Despite recent advances,existing approaches still suffer from two limitations:(1)without considering intermediate interactions and adequate alignment between different modalities,these models cannot guarantee the discriminative ability of representations;and(2)existing feature aggregators are susceptible to certain noisy regions,which may lead to unreasonable pooling coefficients and affect the quality of the final aggregated features.Methods To address these challenges,we propose a novel cross-modal retrieval model containing a well-designed alignment module and a novel multimodal fusion encoder that aims to learn the adequate alignment and interaction of aggregated features to effectively bridge the modality gap.Results Experiments on the Microsoft COCO and Flickr30k datasets demonstrated the superiority of our model over state-of-the-art methods.
文摘In the era of big data rich inWe Media,the single mode retrieval system has been unable to meet people’s demand for information retrieval.This paper proposes a new solution to the problem of feature extraction and unified mapping of different modes:A Cross-Modal Hashing retrieval algorithm based on Deep Residual Network(CMHR-DRN).The model construction is divided into two stages:The first stage is the feature extraction of different modal data,including the use of Deep Residual Network(DRN)to extract the image features,using the method of combining TF-IDF with the full connection network to extract the text features,and the obtained image and text features used as the input of the second stage.In the second stage,the image and text features are mapped into Hash functions by supervised learning,and the image and text features are mapped to the common binary Hamming space.In the process of mapping,the distance measurement of the original distance measurement and the common feature space are kept unchanged as far as possible to improve the accuracy of Cross-Modal Retrieval.In training the model,adaptive moment estimation(Adam)is used to calculate the adaptive learning rate of each parameter,and the stochastic gradient descent(SGD)is calculated to obtain the minimum loss function.The whole training process is completed on Caffe deep learning framework.Experiments show that the proposed algorithm CMHR-DRN based on Deep Residual Network has better retrieval performance and stronger advantages than other Cross-Modal algorithms CMFH,CMDN and CMSSH.
基金supported by the NationalNatural Science Foundation of China(No.61862041).
文摘Existing speech retrieval systems are frequently confronted with expanding volumes of speech data.The dynamic updating strategy applied to construct the index can timely process to add or remove unnecessary speech data to meet users’real-time retrieval requirements.This study proposes an efficient method for retrieving encryption speech,using unsupervised deep hashing and B+ tree dynamic index,which avoid privacy leak-age of speech data and enhance the accuracy and efficiency of retrieval.The cloud’s encryption speech library is constructed by using the multi-threaded Dijk-Gentry-Halevi-Vaikuntanathan(DGHV)Fully Homomorphic Encryption(FHE)technique,which encrypts the original speech.In addition,this research employs Residual Neural Network18-Gated Recurrent Unit(ResNet18-GRU),which is used to learn the compact binary hash codes,store binary hash codes in the designed B+tree index table,and create a mapping relation of one to one between the binary hash codes and the corresponding encrypted speech.External B+tree index technology is applied to achieve dynamic index updating of the B+tree index table,thereby satisfying users’needs for real-time retrieval.The experimental results on THCHS-30 and TIMIT showed that the retrieval accuracy of the proposed method is more than 95.84%compared to the existing unsupervised hashing methods.The retrieval efficiency is greatly improved.Compared to the method of using hash index tables,and the speech data’s security is effectively guaranteed.
基金supported and funded by KAU Scientific Endowment,King Abdulaziz University,Jeddah,Saudi Arabia,grant number 077416-04.
文摘The utilization of digital picture search and retrieval has grown substantially in numerous fields for different purposes during the last decade,owing to the continuing advances in image processing and computer vision approaches.In multiple real-life applications,for example,social media,content-based face picture retrieval is a well-invested technique for large-scale databases,where there is a significant necessity for reliable retrieval capabilities enabling quick search in a vast number of pictures.Humans widely employ faces for recognizing and identifying people.Thus,face recognition through formal or personal pictures is increasingly used in various real-life applications,such as helping crime investigators retrieve matching images from face image databases to identify victims and criminals.However,such face image retrieval becomes more challenging in large-scale databases,where traditional vision-based face analysis requires ample additional storage space than the raw face images already occupied to store extracted lengthy feature vectors and takes much longer to process and match thousands of face images.This work mainly contributes to enhancing face image retrieval performance in large-scale databases using hash codes inferred by locality-sensitive hashing(LSH)for facial hard and soft biometrics as(Hard BioHash)and(Soft BioHash),respectively,to be used as a search input for retrieving the top-k matching faces.Moreover,we propose the multi-biometric score-level fusion of both face hard and soft BioHashes(Hard-Soft BioHash Fusion)for further augmented face image retrieval.The experimental outcomes applied on the Labeled Faces in the Wild(LFW)dataset and the related attributes dataset(LFW-attributes),demonstrate that the retrieval performance of the suggested fusion approach(Hard-Soft BioHash Fusion)significantly improved the retrieval performance compared to solely using Hard BioHash or Soft BioHash in isolation,where the suggested method provides an augmented accuracy of 87%when executed on 1000 specimens and 77%on 5743 samples.These results remarkably outperform the results of the Hard BioHash method by(50%on the 1000 samples and 30%on the 5743 samples),and the Soft BioHash method by(78%on the 1000 samples and 63%on the 5743 samples).
基金supported by the National Natural Science Foundation of China(No.61862041).
文摘To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security,retrieval efficiency,and retrieval accuracy.This research suggests a searchable encryption and deep hashing-based secure image retrieval technique that extracts more expressive image features and constructs a secure,searchable encryption scheme.First,a deep learning framework based on residual network and transfer learn-ing model is designed to extract more representative image deep features.Secondly,the central similarity is used to quantify and construct the deep hash sequence of features.The Paillier homomorphic encryption encrypts the deep hash sequence to build a high-security and low-complexity searchable index.Finally,according to the additive homomorphic property of Paillier homomorphic encryption,a similarity measurement method suitable for com-puting in the retrieval system’s security is ensured by the encrypted domain.The experimental results,which were obtained on Web Image Database from the National University of Singapore(NUS-WIDE),Microsoft Common Objects in Context(MS COCO),and ImageNet data sets,demonstrate the system’s robust security and precise retrieval,the proposed scheme can achieve efficient image retrieval without revealing user privacy.The retrieval accuracy is improved by at least 37%compared to traditional hashing schemes.At the same time,the retrieval time is saved by at least 9.7%compared to the latest deep hashing schemes.
基金Supported by the National Natural Science Foundation of China(61373100)the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems(BUAA-VR-16KF-13,BUAA-VR-17KF-14,BUAA-VR-17KF-15)the Research Project Supported by Shanxi Scholarship Council of China(2016-038)
文摘Lung medical image retrieval based on content similarity plays an important role in computer-aided diagnosis of lung cancer.In recent years,binary hashing has become a hot topic in this field due to its compressed storage and fast query speed.Traditional hashing methods often rely on highdimensional features based hand-crafted methods,which might not be optimally compatible with lung nodule images.Also,different hashing bits contribute to the image retrieval differently,and therefore treating the hashing bits equally affects the retrieval accuracy.Hence,an image retrieval method of lung nodule images is proposed with the basis on convolutional neural networks and hashing.First,apre-trained and fine-tuned convolutional neural network is employed to learn multilevel semantic features of the lung nodules.Principal components analysis is utilized to remove redundant information and preserve informative semantic features of the lung nodules.Second,the proposed method relies on nine sign labels of lung nodules for the training set,and the semantic feature is combined to construct hashing functions.Finally,returned lung nodule images can be easily ranked with the query-adaptive search method based on weighted Hamming distance.Extensive experiments and evaluations on the dataset demonstrate that the proposed method can significantly improve the expression ability of lung nodule images,which further validates the effectiveness of the proposed method.
文摘Image retrieval has become more and more important because of the explosive growth of images on the Internet.Traditional image retrieval methods have limited image retrieval performance due to the poor image expression abhility of visual feature and high dimension of feature.Hashing is a widely-used method for Approximate Nearest Neighbor(ANN)search due to its rapidity and timeliness.Meanwhile,Convolutional Neural Networks(CNNs)have strong discriminative characteristics which are used for image classification.In this paper,we propose a CNN architecture based on improved deep supervised hashing(IDSH)method,by which the binary compact codes can be generated directly.The main contributions of this paper are as follows:first,we add a Batch Normalization(BN)layer before each activation layer to prevent the gradient from vanishing and improve the training speed;secondly,we use Divide-and-Encode Module to map image features to approximate hash codes;finally,we adopt center loss to optimize training.Extensive experimental results on four large-scale datasets:MNIST,CIFAR-10,NUS-WIDE and SVHN demonstrate the effectiveness of the proposed method compared with other state-of-the-art hashing methods.
基金supported in part by the National Natural Science Foundation of China under Grant 61772561,author J.Q,http://www.nsfc.gov.cn/in part by the Key Research and Development Plan of Hunan Province under Grant 2018NK2012,author J.Q,http://kjt.hunan.gov.cn/+7 种基金in part by the Key Research and Development Plan of Hunan Province under Grant 2019SK2022,author Y.T,http://kjt.hunan.gov.cn/in part by the Science Research Projects of Hunan Provincial Education Department under Grant 18A174,author X.X,http://kxjsc.gov.hnedu.cn/in part by the Science Research Projects of Hunan Provincial Education Department under Grant 19B584,author Y.T,http://kxjsc.gov.hnedu.cn/in part by the Degree&Postgraduate Education Reform Project of Hunan Province under Grant 2019JGYB154,author J.Q,http://xwb.gov.hnedu.cn/in part by the Postgraduate Excellent teaching team Project of Hunan Province under Grant[2019]370-133,author J.Q,http://xwb.gov.hnedu.cn/in part by the Postgraduate Education and Teaching Reform Project of Central South University of Forestry&Technology under Grant 2019JG013,author X.X,http://jwc.csuft.edu.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4140),author Y.T,http://kjt.hunan.gov.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4141),author X.X,http://kjt.hunan.gov.cn/.
文摘In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to describe image information.The advantages of hash method in reducing data storage and improving efficiency also make us study how to effectively apply to large-scale image retrieval.In this paper,a hash algorithm of multi-index image retrieval based on multi-view feature coding is proposed.By learning the data correlation between different views,this algorithm uses multi-view data with deeper level image semantics to achieve better retrieval results.This algorithm uses a quantitative hash method to generate binary sequences,and uses the hash code generated by the association features to construct database inverted index files,so as to reduce the memory burden and promote the efficient matching.In order to reduce the matching error of hash code and ensure the retrieval accuracy,this algorithm uses inverted multi-index structure instead of single-index structure.Compared with other advanced image retrieval method,this method has better retrieval performance.
文摘Convolutional Neural Networks (CNN) has been a very popular area in large scale data processing and many works have demonstrate that CNN is a very promising tool in many field, e.g., image classification and image retrieval. Theoretically, CNN features can become better and better with the increase of CNN layers. But on the other side more layers can dramatically increase the computational cost on the same condition of other devices. In addition to CNN features, how to dig out the potential information contained in the features is also an important aspect. In this paper, we propose a novel approach utilize deep CNN to extract image features and then introduce a Regularized Locality Preserving Indexing (RLPI) method which can make features more differentiated through learning a new space of the data space. First, we apply deep networks (VGG-net) to extract image features and then introduce Regularized Locality Preserving Indexing (RLPI) method to train a model. Finally, the new feature space can be generated through this model and then can be used to image retrieval.
基金supported by the National Natural Science Foundation of China(No.12172186)。
文摘Cross-modal retrieval tries to achieve mutual retrieval between modalities by establishing consistent alignment for different modal data.Currently,many cross-modal retrieval methods have been proposed and have achieved excellent results;however,these are trained with clean cross-modal pairs,which are semantically matched but costly,compared with easily available data with noise alignment(i.e.,paired but mismatched in semantics).When training these methods with noise-aligned data,the performance degrades dramatically.Therefore,we propose a robust cross-modal retrieval with alignment refurbishment(RCAR),which significantly reduces the impact of noise on the model.Specifically,RCAR first conducts multi-task learning to slow down the overfitting to the noise to make data separable.Then,RCAR uses a two-component beta-mixture model to divide them into clean and noise alignments and refurbishes the label according to the posterior probability of the noise-alignment component.In addition,we define partial and complete noises in the noise-alignment paradigm.Experimental results show that,compared with the popular cross-modal retrieval methods,RCAR achieves more robust performance with both types of noise.