A study of toad infestation was carried out from July to December 2022, in the vicinity of the Mfilou and Ngamboulou Rivers, with the aim of determining the prevalence rate of parasitic carriage in these toads. After ...A study of toad infestation was carried out from July to December 2022, in the vicinity of the Mfilou and Ngamboulou Rivers, with the aim of determining the prevalence rate of parasitic carriage in these toads. After collecting 289 specimens, all belonging to the Anuran order and Bufonidae family, three species were identified: Sclerophrys camerunensis (Parker, 1936), Sclerophrys regularis (Reuss, 1834) and Sclerophrys sp. The most abundant species were Sclerophrys camerunensis, followed by Sclerophrys regularis. With regard to parasitological aspects, of the 289 specimens collected, 195 were parasitized, i.e. a percentage of 67.47%. The only parasitic species identified was Ascaris sp., which is preferentially located in the intestine.展开更多
This study investigated the distribution of microplastics and heavy metals,along with the interaction between the two in the sediments of urban rivers in China.Results showed that the abundance of microplastics ranged...This study investigated the distribution of microplastics and heavy metals,along with the interaction between the two in the sediments of urban rivers in China.Results showed that the abundance of microplastics ranged from 2412±187.5 to 7638±1312items kg^(-1)dry sediment across different survey stations,with an average abundance at(4388±713)items kg^(-1)dry sediment.Upon further categorization,it was found that transparent fragments were the primary color and type of microplastics present.The potential ecological risk index(RI)of heavy metals in sediments suggested a low level of ecological risk within a majority of the urban rivers studied.Cd was identified as the main potential ecological risk factor in the sediments of the studied areas.There was a relatively good significant linear relationship between the RI of heavy metals and the abundance of microplastics,bolstering the linkage between these two environmental pollutants.However,the concentrations of heavy metals in microplastics were not dependent on their corresponding contents in sediments.In fact,the concentration of Cu,Cd,and As in microplastics were higher than those in the sediments.This finding confirmed that microplastics could serve as carriers of heavy metals and introduce potential risks to aquatic wildlife and human through the food chain.展开更多
The Arun and Tista Rivers,which flow across the Himalayas,are commonly known as antecedent valleys that overcame the rapid uplift of the Higher Himalayan ranges.To clarify whether the idea of antecedent rivers is acce...The Arun and Tista Rivers,which flow across the Himalayas,are commonly known as antecedent valleys that overcame the rapid uplift of the Higher Himalayan ranges.To clarify whether the idea of antecedent rivers is acceptable,we investigated the geomorphology of the Himalayas between eastern Nepal and Bhutan Himalayas.The southern part of Tibetan Plateau,extending across the Himalayas as tectonically un-deformed glaciated terrain named as'Tibetan Corridor,'does not suggest the regional uplift of the Higher Himalayas.The 8,000-m class mountains of Everest,Makalu,and Kanchenjunga are isolated residual peaks on the glaciated terrain composed of mountain peaks of 4,000–6,000 m high.The Tibetan glaciers commonly beheaded by Himalayan glaciers along the great watershed of the Himalayas suggest the expansion of Himalayan river drainage by glaciation.For the narrow upstream regions of the Arun and Tista Rivers with less precipitation behind the range,it is hard to collect enough water for the power of down-cutting their channels against the uplifting Himalayas.The fission track ages of the Higher Himalayan Crystalline Nappe suggest that the Himalayas attained their present altitude by 11–10 Ma,and the Arun and Tista Rivers formed deep gorges across the Himalayas by headward erosion.展开更多
Small mountainous rivers are characterized by large instantaneous fluxes and susceptible to extreme weather events,which can rapidly transport materials into the sea and have a significant impact on the ecological env...Small mountainous rivers are characterized by large instantaneous fluxes and susceptible to extreme weather events,which can rapidly transport materials into the sea and have a significant impact on the ecological environment of estuaries and bays.In order to investigate the seasonal characteristics of nutrients in small mountainous rivers in the subtropical monsoon region and the output pattern to the sea during heavy precipitation,surveys on the mountainous rivers were carried out in Baixi watershed in August 2020(wet season),March 2021(dry season)and June 2021(Meiyu period).The results showed that the dissolved inorganic nitrogen(DIN)of the rivers has an average concentration of 752μg L^(−1)in the wet season and 1472μg L^(−1)in the dry season.The concentrations of dissolved inorganic phosphorus(DIP)in wet season and dry season were 63μg L^(−1)and 51μg L^(−1),respectively.Influenced by the changes of land use in sub-watersheds,DIN concentrations in the mainstream increased from 701μg L^(−1)in the upper reaches to 1284μg L^(−1)in the middle reaches.Two rainstorms during the Meiyu period in the watershed caused the pulse runoff in the river.The maximum daily runoff reached 70 times that before rains.The maximum daily fluxes of DIN and DIP were 109 and 247 times that before rains,respectively.In view that the watershed experienced several rainstorms in the wet season,the river,with pulse runoff,carries a large amount of nutrients into the sea in a short time,which will have a significant impact on the environment of Sanmen bay and its adjacent sea.展开更多
The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphi...The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphic features is considered as a digital terrain analysis method which reflects the macro-topographic features by using micro-topographic factors.However,pieces of studies have extended the concept of slope spectrum in the field of geoscience to construction land to explore its expansion law,while research on the slope trend of cropland from that perspective remains rare.To address the gap,in virtue of spatial analysis and geographically weighted regression(GWR)model,the cropland use change in the Yangtze River Basin(YRB)from 2000 to 2020 was analyzed and the driving factors were explored from the perspective of slope spectrum.Results showed that the slope spectrum curves of cropland area-frequency in the YRB showed a first upward then a downward trend.The change curve of the slope spectrum of cropland in each province(municipality)exhibited various distribution patterns.Quantitative analysis of morphological parameters of cropland slope spectrum revealed that the further down the YRB,the stronger the flattening characteristics,the more obvious the concentration.The province experienced the greatest downhill cropland climbing(CLC)was Shannxi,while province experienced the highest uphill CLC was Zhejiang.The most common cropland use change type in the YRB was horizontal expansion type.The factors affecting average cropland climbing index(ACCI)were quite stable in different periods,while population density(POP)changed from negative to positive during the study period.This research is of practical significance for the rational utilization of cropland at the watershed scale.展开更多
To understand the CH_(4) flux variations and their climatic drivers in the rice-wheat agroecosystem in the Huai River Basin of China,the CH_(4) flux was observed by using open-path eddy covariance at a typical rice-wh...To understand the CH_(4) flux variations and their climatic drivers in the rice-wheat agroecosystem in the Huai River Basin of China,the CH_(4) flux was observed by using open-path eddy covariance at a typical rice-wheat rotation system in Anhui Province,China from November 2019 to October 2021.The variations and their drivers were then analyzed with the Akaike information criterion method.CH_(4) flux showed distinct diurnal variations with single peaks during 9:00-13:00 local time.The highest peak was 2.15μg m^(-2)s^(-1)which occurred at 11:00 in the vegetative growth stage in the rice growing season(RGS).CH_(4) flux also showed significant seasonal variations.The average CH_(4)flux in the vegetative growth stage in the RGS(193.8±74.2 mg m^(-2)d^(-1))was the highest among all growth stages.The annual total CH_(4) flux in the non-rice growing season(3.2 g m^(-2))was relatively small compared to that in the RGS(23.9 g m^(-2)).CH_(4) flux increased significantly with increase in air temperature,soil temperature,and soil water content in both the RGS and the non-RGS,while it decreased significantly with increase in vapor pressure deficit in the RGS.This study provided a comprehensive understanding of the CH_(4) flux and its drivers in the rice-wheat rotation agroecosystem in the Huai River Basin of China.In addition,our findings will be helpful for the validation and adjustment of the CH_(4) models in this region.展开更多
Since time immemorial,humans have made their homes alongside waterways,and mighty rivers have been the cradles of human civilization.However,as society has evolved at an ever-accelerating pace,our relationship with th...Since time immemorial,humans have made their homes alongside waterways,and mighty rivers have been the cradles of human civilization.However,as society has evolved at an ever-accelerating pace,our relationship with these life-giving streams has shifted dramatically,from one of reverence to exploitation.Now,the profound water crisis has compelled humanity to reexamine its connection with rivers.展开更多
In the history, the main roles of inland rivers in Beilun Port City of Ningbo were desalination,blocking tides, shipping, and flood control. Nowadays, with the continuous spread and deepening ofurbanization, the ecolo...In the history, the main roles of inland rivers in Beilun Port City of Ningbo were desalination,blocking tides, shipping, and flood control. Nowadays, with the continuous spread and deepening ofurbanization, the ecological environment of river courses has been destroyed. In the past, remediationmeasures based on engineering and technology played a certain role, but can not “cure the root cause”. Itshould respect the historical evolution process of river courses, and highlight the ecological service functionand leisure tourism value of river courses from the coordination perspective of urban and rural ecologicalenvironment, economic industries, society and culture in the planning ideas of ecology, production, andlife integration. Four aspects of the measures are as below: protecting and repairing the ecological matrixof river courses;building green space system and maintaining flood control functions through the waternetwork;protecting cultural heritage along the rivers;developing waterfront leisure tourism scenic area.展开更多
In this paper,the definition,connotation,and internal relationship of mountains,rivers,forests,farmlands,lakes,and grasslands in China are elaborated,and the current situation of ecological restoration projects for mo...In this paper,the definition,connotation,and internal relationship of mountains,rivers,forests,farmlands,lakes,and grasslands in China are elaborated,and the current situation of ecological restoration projects for mountains,rivers,forests,farmlands,lakes,and grasslands was introduced.Moreover,the problems that have arisen in the specific implementation process of pilot projects were analyzed,such as unclear target positioning,inaccurate analysis of ecological problems,insufficient engineering design systematicness,weak operability of evaluation standards,and weak coordination in engineering management.The development direction and major needs for the protection and restoration of mountains,rivers,forests,farmlands,lakes,and grasslands in the future have been proposed from four aspects:theoretical research,engineering design,effect evaluation,and monitoring and supervision.展开更多
The main urban area of Chongqing is surrounded by two rivers and set against each other.With its unique waterfront landscape,it has the resource conditions to become a leisure tourism destination.Intending to enhance ...The main urban area of Chongqing is surrounded by two rivers and set against each other.With its unique waterfront landscape,it has the resource conditions to become a leisure tourism destination.Intending to enhance people’s happiness,improve city quality,and promote Chongqing’s main urban area to become a tourist destination,this paper finds out the existing problems in the construction of public outdoor leisure and fitness facilities on the two rivers and four banks of Chongqing’s main urban area through investigation and analysis based on relevant experiences at home and abroad,takes the value chain theory as the guidance,and to find solutions to the problem.On this basis,combined with the law of economic operation,this paper puts forward the guiding ideology,principles,development goals,functional orientation,and development path for the improvement of public outdoor leisure and fitness on two rivers and four banks in the main city of Chongqing,and accordingly puts forward the policy system and guarantee measures for its improvement.展开更多
Literature lacked in providing a comprehensive research on heavy metal detection in aquatic, biological and sedimentary states of rivers. The present study was imparted with all these three components of the river. He...Literature lacked in providing a comprehensive research on heavy metal detection in aquatic, biological and sedimentary states of rivers. The present study was imparted with all these three components of the river. Heavy metal toxicity or pollution index was used as a tool for ecological risk assessment by considering the single state studies conducted by many researchers. An intensive ecological risk assessment model was constructed and heavy metals were indicated as a serious threat to the environment. The model was applied to determining five toxic heavy metals in three states of the Songhua River. According to the ecological risk index, heavy metal pollution in three phases was categorized as aquatic〉biological〉sedimentary, while the overall descending order of heavy metal ecological risk index was as Cd〉Hg〉As〉Pb〉Cr. Cd and Hg were selected as the priority pollutants of Songhua River.展开更多
The vertical profile distribution characteristics of nitrogen in core sediments of Three Rivers Estuary in Poyang Lake were studied.The results showed that TN content in core sediments ranged from 480.0 to 1 900.0 μg...The vertical profile distribution characteristics of nitrogen in core sediments of Three Rivers Estuary in Poyang Lake were studied.The results showed that TN content in core sediments ranged from 480.0 to 1 900.0 μg/g with the change of depth,which was divided into three distribution types as follows:TN content decreases gradually with the increase of depth,TN content increases gradually with the increase of depth or higher content in the middle but lower content in two ends.NH4+-N content ranged from 8.7 ...展开更多
[Objective] This study was conducted to find a restoration method suitable for urban polluted rivers. [Method] A segment of a representative river in the old part of a certain city in south Jiangsu was selected as a r...[Objective] This study was conducted to find a restoration method suitable for urban polluted rivers. [Method] A segment of a representative river in the old part of a certain city in south Jiangsu was selected as a research area through previous investigation, and the polluted river was cleaned and restored by 3 methods, i.e. artificial wetland, floating island type wetland and purification floating island. [Resuit] Floating plants (Hydrocotyle verticillata and Myriophyllum spicatum) showed better restoration effects than emergent aquatic plants (Iris wilsonii, Arundo donax, reed, water-cultured Ilex chinensis and Lythrum salicaria). The two types of plants showed the removal rates of total nitrogen of 37.9% and 34.1%, respectively, the removal rates of total phosphorous of 80.1% and 73.5%, respectively, the removal rates of COD of 81.1% and 74.8%, respectively, the removal rates of ammonia nitrogen of 80.6% and 85.9%, respectively, and the removal rates of SS of 59.1% and 77.3%, respectively. Among the purification floating island, the artificial wetland and the floating island type wetland, the purification floating land restoration technique exhibited the best removal effect, with the removal rates of 87.6%, 71.3%, 87.6%, 97.5% and 81.8% for total nitrogen, total phosphorous, ammonia nitrogen COD and SS, respectively. The nitrification and denitdfication rates of bottom mud and water samples in the engineering segment were remarkably higher than those in the reference segment, by 15.4% and 21.1%, respectively. The nitrification and denitrification rates of bottom mud in the engineering segment and the non-engineering segment were higher than those of water samples by 26.9% and 31.8%, respectively. Restoration plants showed better removal effects of total phosphorous, total nitrogen, COD and SS under aeration condition than noeration condition. [Conclusion] The purification floating island has a significant restoration effect on urban polluted river.展开更多
Water uses in small and middle-sized rivers, and non-ecological treatment model has deteriorated local environment in Shandong. The research reviewed ecological environment status quo of small and middle rivers and co...Water uses in small and middle-sized rivers, and non-ecological treatment model has deteriorated local environment in Shandong. The research reviewed ecological environment status quo of small and middle rivers and concluded existing problems. Finally, ecological treatments were proposed based on treatments at home and abroad in order to improve eco-environment of rivers and build better Shandong.展开更多
The Huanghe and Yongding rivers were formed before the early and middle Pliocene epoch. Then they became interior rivers because of the appearance of interior fault lake basins at the end of the Pliocene epoch. The in...The Huanghe and Yongding rivers were formed before the early and middle Pliocene epoch. Then they became interior rivers because of the appearance of interior fault lake basins at the end of the Pliocene epoch. The interior flow period continued until the end of the early Pleistocene or the middle pf the Middle Pleistocene, and then they changed into the exterior rivers again till today.展开更多
This study was conducted at three rivers of the Chaohu Lake watershed during the summer season of 2008,aiming to investigate the diurnal variations of dissolved CH4 concentrations and emissions,as well as the dynamics...This study was conducted at three rivers of the Chaohu Lake watershed during the summer season of 2008,aiming to investigate the diurnal variations of dissolved CH4 concentrations and emissions,as well as the dynamics of CH4 accumulation emission rates over consecutive 72 h.The results showed that CH4 concentrations in the Fengle,Hangbu,and Nanfei rivers ranged from 56.33-124.79,160.82-341.03,and 213.49-716.81 nmol L-1,respectively,over a daily cycle;while the saturation of CH4 ranged from 188.72-418.07,538.74-1 142.46,and 715.23-2 401.38%,respectively,which indicated that surface waters were in all cases oversaturated with respect to the atmosphere.An obvious diurnal variation pattern of the dissolved CH4 concentrations demonstrated a higher value during daytime but a lower value for night time.Additionally,the highest dissolved CH4 concentrations were detected in the Nanfei River which received substantial urban wastewater discharges.CH4 emissions measured with floating chambers ranged from 5.82-15.46,5.77-8.41,and 13.51-49.25 mg C m-2 h-1 for the Fengle,Hangbu,and Nanfei rivers,respectively,over a daily cycle.Significantly higher CH4 emissions were also observed from the Nanfei River.The accumulative CH4 emissions for each river increased with time,while a decline trend on the accumulation rates was investigated over the consecutive 72 h.展开更多
In this article the meaning of the quantity and quality of environmental flows of river in dualistic water cycle is discussed, and compared with the meaning of unitary water cycle. Based on the analysis of the relatio...In this article the meaning of the quantity and quality of environmental flows of river in dualistic water cycle is discussed, and compared with the meaning of unitary water cycle. Based on the analysis of the relationship between environmental flows of river requirements, the efficiency of water resource usage, the consumption coefficient, and the concentration of waste water elimination, the water quantity and water quality calculation method of the environmental flows of river requirements in dualistic water cycle is developed, and the criteria for environmental flows of river requirements are established, and therefore the water quantity-quality combined evaluation of natural river flows requirements are realized Taking the Liaohe River as a model, the environmental flows of river requirements for Xiliao River, Dongliao River, mainstream Liaohe River, Huntai River and northeast rivers along the coasts of the Yellow and Bohai seas in unitary water cycle are calculated, each taking up 39.3%, 63.0%, 43.9%, 43.3% and 43.5% of runoff respectively. Evaluated according to Tennant recommended flow, the results show that: except Xiliao River is "median", the rest are all upon "good", the Dongliao River is even "very good". The corresponding results in dualistic water cycle are that, the proportion of natural flows for each river is 57.5%, 74.1%, 60.8%, 60.3% and 60.4%; while the combined evaluation results show that: considering "quantity", except Xiliao River, the rest rivers can all achieve the "quantity" criteria of the en- vironmental flows of river requirements, but if considering the aspect of "quality", only Dongliao River can reach the "quality" standard. By water quantity-quality combined evaluation method, only Dongliao River can achieve the criteria. So the water quality is the main factor that determines whether the environmental flows can meet the river ecosystem demands.展开更多
In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Base...In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.展开更多
Characteristics of the spatiotemporal distributions of precipitation anomalies in the reaches of the Yangtze River and Huaihe River (YHR) were studied using EOF method. Four main precipitation pat-terns for the YHR ...Characteristics of the spatiotemporal distributions of precipitation anomalies in the reaches of the Yangtze River and Huaihe River (YHR) were studied using EOF method. Four main precipitation pat-terns for the YHR in summer identified by the first two modes: a region-wide flood over the entire YHR (RWF); a region-wide drought over the entire YHR (RWD); a flood in the south with a drought in the northern region of the Yangtze River (FS-DN); and a drought in the south with a flood in the northern region of the Yangtze River (DS-FN). Based on the first two modes and the actual precipitation departure percentage, a new precipitation index is defined in this paper. The typical flood/drought years associated with the various rainfall patterns defined by this precipitation index are more representative and closer to reality compared to some existing precipitation indexes which just use the area-mean precipitation or the EOF time components individually. The characteristics of atmospheric circulation in summer corresponding to the four main precipitation patterns over the YHR in summer show the features of atmospheric circulation differ in different precipitation pattern years. Although the different patterns share a common main influential circulation system, such as the blocking high over northeastern Asia, the low trough of westerly flows in the mid latitudes, the West Pacific Subtropical High (WPSH), and the high ridge over the Tibet Plateau, the difference in location and intensity of these systems can lead to different distributions of precipitation anomalies.展开更多
With the regional population growth, socioeconomic development, more and more attention has been paid to issues on the shared water allocation and the transboundary eco-security conservation during the development of ...With the regional population growth, socioeconomic development, more and more attention has been paid to issues on the shared water allocation and the transboundary eco-security conservation during the development of water resources in the international rivers. In this paper, the existing major problems on transboundary waters in different sub-regions of Asia, such as water shortage, transboundary waters pollution, fragile eco-environment are discussed. Then, the key scientific issues to be concerned in the next study progress on the basis of the analyses of the new research directions and focus fields are raised: (1) unpredicted changes of the hydrologic and water system, and their impacts on the allocation of the sharing waters by global changes; (2) models of the international cooperation on the international rivers on the studies of international and national water laws or regulations, policies, the relative experiences and the case studies; (3) quantificational assessment on environmental flow, available water, and the comprehensive functions and values of the international watercourse system; (4) studies on transboundary aquatic bio-diversity maintenance, transboundary pollution supervision and treatment under the rules and principles accepted by the riparian states; (5) issues on transboundary compensation at the rules of "payments for using", "payments for harm" and "compensation for benefit"; (6) using advanced 3S techniques to promote the integrated watershed development and management; and so on.展开更多
文摘A study of toad infestation was carried out from July to December 2022, in the vicinity of the Mfilou and Ngamboulou Rivers, with the aim of determining the prevalence rate of parasitic carriage in these toads. After collecting 289 specimens, all belonging to the Anuran order and Bufonidae family, three species were identified: Sclerophrys camerunensis (Parker, 1936), Sclerophrys regularis (Reuss, 1834) and Sclerophrys sp. The most abundant species were Sclerophrys camerunensis, followed by Sclerophrys regularis. With regard to parasitological aspects, of the 289 specimens collected, 195 were parasitized, i.e. a percentage of 67.47%. The only parasitic species identified was Ascaris sp., which is preferentially located in the intestine.
基金supported by the Key Research and Development Program (Scientific and Technological Project)of Henan Province (Nos.212102310080,222102320294,and 232102231062)the Fundamental Research Funds for the Central Universities (No.220602024)the Major Focus Project of Henan Academy of Sciences (No.220102002)。
文摘This study investigated the distribution of microplastics and heavy metals,along with the interaction between the two in the sediments of urban rivers in China.Results showed that the abundance of microplastics ranged from 2412±187.5 to 7638±1312items kg^(-1)dry sediment across different survey stations,with an average abundance at(4388±713)items kg^(-1)dry sediment.Upon further categorization,it was found that transparent fragments were the primary color and type of microplastics present.The potential ecological risk index(RI)of heavy metals in sediments suggested a low level of ecological risk within a majority of the urban rivers studied.Cd was identified as the main potential ecological risk factor in the sediments of the studied areas.There was a relatively good significant linear relationship between the RI of heavy metals and the abundance of microplastics,bolstering the linkage between these two environmental pollutants.However,the concentrations of heavy metals in microplastics were not dependent on their corresponding contents in sediments.In fact,the concentration of Cu,Cd,and As in microplastics were higher than those in the sediments.This finding confirmed that microplastics could serve as carriers of heavy metals and introduce potential risks to aquatic wildlife and human through the food chain.
基金This work was supported by Grants-in-Aid for Scientific Research of the Japanese Society for the Promotion of Science(JSPS KAKENHI)Grant Number 18H00766(principal investigator:Takashi Nakata)Grant Number 18KK0027(principal investigator:Yasuhiro Kumahara).
文摘The Arun and Tista Rivers,which flow across the Himalayas,are commonly known as antecedent valleys that overcame the rapid uplift of the Higher Himalayan ranges.To clarify whether the idea of antecedent rivers is acceptable,we investigated the geomorphology of the Himalayas between eastern Nepal and Bhutan Himalayas.The southern part of Tibetan Plateau,extending across the Himalayas as tectonically un-deformed glaciated terrain named as'Tibetan Corridor,'does not suggest the regional uplift of the Higher Himalayas.The 8,000-m class mountains of Everest,Makalu,and Kanchenjunga are isolated residual peaks on the glaciated terrain composed of mountain peaks of 4,000–6,000 m high.The Tibetan glaciers commonly beheaded by Himalayan glaciers along the great watershed of the Himalayas suggest the expansion of Himalayan river drainage by glaciation.For the narrow upstream regions of the Arun and Tista Rivers with less precipitation behind the range,it is hard to collect enough water for the power of down-cutting their channels against the uplifting Himalayas.The fission track ages of the Higher Himalayan Crystalline Nappe suggest that the Himalayas attained their present altitude by 11–10 Ma,and the Arun and Tista Rivers formed deep gorges across the Himalayas by headward erosion.
基金financially supported by the Postdoctoral Foundation of Qingdao(Pb Isotopes of Oujiang River to Quantitatively Identify Sediment Provenance in Oujiang Estuary and Adjacent Area)the China Geological Survey Project(No.DD20190276)the Fund of Ministry of Science and Technology(Nos.2013FY112200 and 2019YFE0127200).
文摘Small mountainous rivers are characterized by large instantaneous fluxes and susceptible to extreme weather events,which can rapidly transport materials into the sea and have a significant impact on the ecological environment of estuaries and bays.In order to investigate the seasonal characteristics of nutrients in small mountainous rivers in the subtropical monsoon region and the output pattern to the sea during heavy precipitation,surveys on the mountainous rivers were carried out in Baixi watershed in August 2020(wet season),March 2021(dry season)and June 2021(Meiyu period).The results showed that the dissolved inorganic nitrogen(DIN)of the rivers has an average concentration of 752μg L^(−1)in the wet season and 1472μg L^(−1)in the dry season.The concentrations of dissolved inorganic phosphorus(DIP)in wet season and dry season were 63μg L^(−1)and 51μg L^(−1),respectively.Influenced by the changes of land use in sub-watersheds,DIN concentrations in the mainstream increased from 701μg L^(−1)in the upper reaches to 1284μg L^(−1)in the middle reaches.Two rainstorms during the Meiyu period in the watershed caused the pulse runoff in the river.The maximum daily runoff reached 70 times that before rains.The maximum daily fluxes of DIN and DIP were 109 and 247 times that before rains,respectively.In view that the watershed experienced several rainstorms in the wet season,the river,with pulse runoff,carries a large amount of nutrients into the sea in a short time,which will have a significant impact on the environment of Sanmen bay and its adjacent sea.
基金supported in part by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources(NRMSSHR2023Y02)Yunnan Key Laboratory of Plateau Geographic Processes and Environmental Changes(PGPEC2304)+1 种基金Yunnan Normal University,China.This study was also sponsored by the Scientific Research Project of Education Department of Hubei Province(Grant No.B2022262)the Philosophy and Social Sciences Research Project of Education Department of Hubei Province(Grant No.22G024).
文摘The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphic features is considered as a digital terrain analysis method which reflects the macro-topographic features by using micro-topographic factors.However,pieces of studies have extended the concept of slope spectrum in the field of geoscience to construction land to explore its expansion law,while research on the slope trend of cropland from that perspective remains rare.To address the gap,in virtue of spatial analysis and geographically weighted regression(GWR)model,the cropland use change in the Yangtze River Basin(YRB)from 2000 to 2020 was analyzed and the driving factors were explored from the perspective of slope spectrum.Results showed that the slope spectrum curves of cropland area-frequency in the YRB showed a first upward then a downward trend.The change curve of the slope spectrum of cropland in each province(municipality)exhibited various distribution patterns.Quantitative analysis of morphological parameters of cropland slope spectrum revealed that the further down the YRB,the stronger the flattening characteristics,the more obvious the concentration.The province experienced the greatest downhill cropland climbing(CLC)was Shannxi,while province experienced the highest uphill CLC was Zhejiang.The most common cropland use change type in the YRB was horizontal expansion type.The factors affecting average cropland climbing index(ACCI)were quite stable in different periods,while population density(POP)changed from negative to positive during the study period.This research is of practical significance for the rational utilization of cropland at the watershed scale.
基金supported by the Natural Science Foundation of Jiangsu Province,China(BK20220017)the Innovation Development Project of China Meteorological Administration(CXFZ2023J073)+1 种基金the Key Research and Development Program of Anhui Province,China(2022M07020003)the Graduate Student Practice and Innovation Program of Jiangsu Province,China(SJCX22_0374)。
文摘To understand the CH_(4) flux variations and their climatic drivers in the rice-wheat agroecosystem in the Huai River Basin of China,the CH_(4) flux was observed by using open-path eddy covariance at a typical rice-wheat rotation system in Anhui Province,China from November 2019 to October 2021.The variations and their drivers were then analyzed with the Akaike information criterion method.CH_(4) flux showed distinct diurnal variations with single peaks during 9:00-13:00 local time.The highest peak was 2.15μg m^(-2)s^(-1)which occurred at 11:00 in the vegetative growth stage in the rice growing season(RGS).CH_(4) flux also showed significant seasonal variations.The average CH_(4)flux in the vegetative growth stage in the RGS(193.8±74.2 mg m^(-2)d^(-1))was the highest among all growth stages.The annual total CH_(4) flux in the non-rice growing season(3.2 g m^(-2))was relatively small compared to that in the RGS(23.9 g m^(-2)).CH_(4) flux increased significantly with increase in air temperature,soil temperature,and soil water content in both the RGS and the non-RGS,while it decreased significantly with increase in vapor pressure deficit in the RGS.This study provided a comprehensive understanding of the CH_(4) flux and its drivers in the rice-wheat rotation agroecosystem in the Huai River Basin of China.In addition,our findings will be helpful for the validation and adjustment of the CH_(4) models in this region.
文摘Since time immemorial,humans have made their homes alongside waterways,and mighty rivers have been the cradles of human civilization.However,as society has evolved at an ever-accelerating pace,our relationship with these life-giving streams has shifted dramatically,from one of reverence to exploitation.Now,the profound water crisis has compelled humanity to reexamine its connection with rivers.
文摘In the history, the main roles of inland rivers in Beilun Port City of Ningbo were desalination,blocking tides, shipping, and flood control. Nowadays, with the continuous spread and deepening ofurbanization, the ecological environment of river courses has been destroyed. In the past, remediationmeasures based on engineering and technology played a certain role, but can not “cure the root cause”. Itshould respect the historical evolution process of river courses, and highlight the ecological service functionand leisure tourism value of river courses from the coordination perspective of urban and rural ecologicalenvironment, economic industries, society and culture in the planning ideas of ecology, production, andlife integration. Four aspects of the measures are as below: protecting and repairing the ecological matrixof river courses;building green space system and maintaining flood control functions through the waternetwork;protecting cultural heritage along the rivers;developing waterfront leisure tourism scenic area.
基金Basic Research Business Funding Project for Public Welfare Research Institutes in the Autonomous Region in 2022(kyys202201).
文摘In this paper,the definition,connotation,and internal relationship of mountains,rivers,forests,farmlands,lakes,and grasslands in China are elaborated,and the current situation of ecological restoration projects for mountains,rivers,forests,farmlands,lakes,and grasslands was introduced.Moreover,the problems that have arisen in the specific implementation process of pilot projects were analyzed,such as unclear target positioning,inaccurate analysis of ecological problems,insufficient engineering design systematicness,weak operability of evaluation standards,and weak coordination in engineering management.The development direction and major needs for the protection and restoration of mountains,rivers,forests,farmlands,lakes,and grasslands in the future have been proposed from four aspects:theoretical research,engineering design,effect evaluation,and monitoring and supervision.
基金funded by the Humanities and Social Sciences Research Planning Fund of the Ministry of Education of the People’s Republic of China,entitled“Research on the Application and Improvement of PPP Model for the Construction of Sports and Leisure Characteristic Towns Based on Value Chain Theory”(Project No.18XJA890002).
文摘The main urban area of Chongqing is surrounded by two rivers and set against each other.With its unique waterfront landscape,it has the resource conditions to become a leisure tourism destination.Intending to enhance people’s happiness,improve city quality,and promote Chongqing’s main urban area to become a tourist destination,this paper finds out the existing problems in the construction of public outdoor leisure and fitness facilities on the two rivers and four banks of Chongqing’s main urban area through investigation and analysis based on relevant experiences at home and abroad,takes the value chain theory as the guidance,and to find solutions to the problem.On this basis,combined with the law of economic operation,this paper puts forward the guiding ideology,principles,development goals,functional orientation,and development path for the improvement of public outdoor leisure and fitness on two rivers and four banks in the main city of Chongqing,and accordingly puts forward the policy system and guarantee measures for its improvement.
基金Project(2010467038)supported by the Special Fund for Environmental Research in the Public Interest,China
文摘Literature lacked in providing a comprehensive research on heavy metal detection in aquatic, biological and sedimentary states of rivers. The present study was imparted with all these three components of the river. Heavy metal toxicity or pollution index was used as a tool for ecological risk assessment by considering the single state studies conducted by many researchers. An intensive ecological risk assessment model was constructed and heavy metals were indicated as a serious threat to the environment. The model was applied to determining five toxic heavy metals in three states of the Songhua River. According to the ecological risk index, heavy metal pollution in three phases was categorized as aquatic〉biological〉sedimentary, while the overall descending order of heavy metal ecological risk index was as Cd〉Hg〉As〉Pb〉Cr. Cd and Hg were selected as the priority pollutants of Songhua River.
基金Supported by Science and Technology Project from Jiangxi Provincial Department of Education(GJJ09430)International Scienceand Technology Cooperation Project(2006DFB91920)NationalKey Water Project(2008ZX07526-008)~~
文摘The vertical profile distribution characteristics of nitrogen in core sediments of Three Rivers Estuary in Poyang Lake were studied.The results showed that TN content in core sediments ranged from 480.0 to 1 900.0 μg/g with the change of depth,which was divided into three distribution types as follows:TN content decreases gradually with the increase of depth,TN content increases gradually with the increase of depth or higher content in the middle but lower content in two ends.NH4+-N content ranged from 8.7 ...
文摘[Objective] This study was conducted to find a restoration method suitable for urban polluted rivers. [Method] A segment of a representative river in the old part of a certain city in south Jiangsu was selected as a research area through previous investigation, and the polluted river was cleaned and restored by 3 methods, i.e. artificial wetland, floating island type wetland and purification floating island. [Resuit] Floating plants (Hydrocotyle verticillata and Myriophyllum spicatum) showed better restoration effects than emergent aquatic plants (Iris wilsonii, Arundo donax, reed, water-cultured Ilex chinensis and Lythrum salicaria). The two types of plants showed the removal rates of total nitrogen of 37.9% and 34.1%, respectively, the removal rates of total phosphorous of 80.1% and 73.5%, respectively, the removal rates of COD of 81.1% and 74.8%, respectively, the removal rates of ammonia nitrogen of 80.6% and 85.9%, respectively, and the removal rates of SS of 59.1% and 77.3%, respectively. Among the purification floating island, the artificial wetland and the floating island type wetland, the purification floating land restoration technique exhibited the best removal effect, with the removal rates of 87.6%, 71.3%, 87.6%, 97.5% and 81.8% for total nitrogen, total phosphorous, ammonia nitrogen COD and SS, respectively. The nitrification and denitdfication rates of bottom mud and water samples in the engineering segment were remarkably higher than those in the reference segment, by 15.4% and 21.1%, respectively. The nitrification and denitrification rates of bottom mud in the engineering segment and the non-engineering segment were higher than those of water samples by 26.9% and 31.8%, respectively. Restoration plants showed better removal effects of total phosphorous, total nitrogen, COD and SS under aeration condition than noeration condition. [Conclusion] The purification floating island has a significant restoration effect on urban polluted river.
基金Supported by Shandong Province Soft Science Research Program(2015RKB01158)the Natural Science Foundation of Shandong Province(ZR2014DL002)Research Initiation Funds for the Introduced Talents in Taishan University(Y-01-2014019)~~
文摘Water uses in small and middle-sized rivers, and non-ecological treatment model has deteriorated local environment in Shandong. The research reviewed ecological environment status quo of small and middle rivers and concluded existing problems. Finally, ecological treatments were proposed based on treatments at home and abroad in order to improve eco-environment of rivers and build better Shandong.
文摘The Huanghe and Yongding rivers were formed before the early and middle Pliocene epoch. Then they became interior rivers because of the appearance of interior fault lake basins at the end of the Pliocene epoch. The interior flow period continued until the end of the early Pleistocene or the middle pf the Middle Pleistocene, and then they changed into the exterior rivers again till today.
基金supported by the National Natural Science Foundation of China(20777073)
文摘This study was conducted at three rivers of the Chaohu Lake watershed during the summer season of 2008,aiming to investigate the diurnal variations of dissolved CH4 concentrations and emissions,as well as the dynamics of CH4 accumulation emission rates over consecutive 72 h.The results showed that CH4 concentrations in the Fengle,Hangbu,and Nanfei rivers ranged from 56.33-124.79,160.82-341.03,and 213.49-716.81 nmol L-1,respectively,over a daily cycle;while the saturation of CH4 ranged from 188.72-418.07,538.74-1 142.46,and 715.23-2 401.38%,respectively,which indicated that surface waters were in all cases oversaturated with respect to the atmosphere.An obvious diurnal variation pattern of the dissolved CH4 concentrations demonstrated a higher value during daytime but a lower value for night time.Additionally,the highest dissolved CH4 concentrations were detected in the Nanfei River which received substantial urban wastewater discharges.CH4 emissions measured with floating chambers ranged from 5.82-15.46,5.77-8.41,and 13.51-49.25 mg C m-2 h-1 for the Fengle,Hangbu,and Nanfei rivers,respectively,over a daily cycle.Significantly higher CH4 emissions were also observed from the Nanfei River.The accumulative CH4 emissions for each river increased with time,while a decline trend on the accumulation rates was investigated over the consecutive 72 h.
基金Major consultation programs of Chinese Academy of EngineeringKey Scientific and Technological Pro-grams of the Ministry of Education, No.105042"973" Project,No.G1999043601
文摘In this article the meaning of the quantity and quality of environmental flows of river in dualistic water cycle is discussed, and compared with the meaning of unitary water cycle. Based on the analysis of the relationship between environmental flows of river requirements, the efficiency of water resource usage, the consumption coefficient, and the concentration of waste water elimination, the water quantity and water quality calculation method of the environmental flows of river requirements in dualistic water cycle is developed, and the criteria for environmental flows of river requirements are established, and therefore the water quantity-quality combined evaluation of natural river flows requirements are realized Taking the Liaohe River as a model, the environmental flows of river requirements for Xiliao River, Dongliao River, mainstream Liaohe River, Huntai River and northeast rivers along the coasts of the Yellow and Bohai seas in unitary water cycle are calculated, each taking up 39.3%, 63.0%, 43.9%, 43.3% and 43.5% of runoff respectively. Evaluated according to Tennant recommended flow, the results show that: except Xiliao River is "median", the rest are all upon "good", the Dongliao River is even "very good". The corresponding results in dualistic water cycle are that, the proportion of natural flows for each river is 57.5%, 74.1%, 60.8%, 60.3% and 60.4%; while the combined evaluation results show that: considering "quantity", except Xiliao River, the rest rivers can all achieve the "quantity" criteria of the en- vironmental flows of river requirements, but if considering the aspect of "quality", only Dongliao River can reach the "quality" standard. By water quantity-quality combined evaluation method, only Dongliao River can achieve the criteria. So the water quality is the main factor that determines whether the environmental flows can meet the river ecosystem demands.
文摘In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.
基金supported by the projectof the National Basic Research Program of China (GrantNo. 2009CB421401)the Key Technologies R&D Program (Grant No. 2009BAC51B02)+2 种基金the Special Scientific Research Fund of the Meteorological Public Welfare Profession of China (Grant No. GYHY200906018)the National Natural Science Foundation of China (Grant No.40705039)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. IAP07415)
文摘Characteristics of the spatiotemporal distributions of precipitation anomalies in the reaches of the Yangtze River and Huaihe River (YHR) were studied using EOF method. Four main precipitation pat-terns for the YHR in summer identified by the first two modes: a region-wide flood over the entire YHR (RWF); a region-wide drought over the entire YHR (RWD); a flood in the south with a drought in the northern region of the Yangtze River (FS-DN); and a drought in the south with a flood in the northern region of the Yangtze River (DS-FN). Based on the first two modes and the actual precipitation departure percentage, a new precipitation index is defined in this paper. The typical flood/drought years associated with the various rainfall patterns defined by this precipitation index are more representative and closer to reality compared to some existing precipitation indexes which just use the area-mean precipitation or the EOF time components individually. The characteristics of atmospheric circulation in summer corresponding to the four main precipitation patterns over the YHR in summer show the features of atmospheric circulation differ in different precipitation pattern years. Although the different patterns share a common main influential circulation system, such as the blocking high over northeastern Asia, the low trough of westerly flows in the mid latitudes, the West Pacific Subtropical High (WPSH), and the high ridge over the Tibet Plateau, the difference in location and intensity of these systems can lead to different distributions of precipitation anomalies.
基金National Key Project for Basic Research, No.2003CB415100 National Natural Science Foundation of China National Key Science and Technology Project of China
文摘With the regional population growth, socioeconomic development, more and more attention has been paid to issues on the shared water allocation and the transboundary eco-security conservation during the development of water resources in the international rivers. In this paper, the existing major problems on transboundary waters in different sub-regions of Asia, such as water shortage, transboundary waters pollution, fragile eco-environment are discussed. Then, the key scientific issues to be concerned in the next study progress on the basis of the analyses of the new research directions and focus fields are raised: (1) unpredicted changes of the hydrologic and water system, and their impacts on the allocation of the sharing waters by global changes; (2) models of the international cooperation on the international rivers on the studies of international and national water laws or regulations, policies, the relative experiences and the case studies; (3) quantificational assessment on environmental flow, available water, and the comprehensive functions and values of the international watercourse system; (4) studies on transboundary aquatic bio-diversity maintenance, transboundary pollution supervision and treatment under the rules and principles accepted by the riparian states; (5) issues on transboundary compensation at the rules of "payments for using", "payments for harm" and "compensation for benefit"; (6) using advanced 3S techniques to promote the integrated watershed development and management; and so on.