A unified power flow controller(UPFC)combines the advantages of various flexible alternating current transmission system(FACTS)devices into a powerful format.Using a 500 kV power grid,this study evaluates the selectio...A unified power flow controller(UPFC)combines the advantages of various flexible alternating current transmission system(FACTS)devices into a powerful format.Using a 500 kV power grid,this study evaluates the selection and use of a UPFC to improve transmission capacity.The"UPFC unit capacity control proportionality coefficient"is introduced to quantify the control effect of the UPFC,and an optimal calculation method for the UPFC capacity is presented.Following the proposal of a UPFC site selection process,the data of an existing power grid is used to conduct simulations.The simulation results show that the UPFC has a strong ability to improve transmission capacity,and its use is greatly advantageous.Additionally,by applying the proposed selection method,the control effect and economic benefits of the UPFC can be comprehensively considered during project site selection.These findings have a guiding significance for UPFC site selection in ultra-high voltage power grids.展开更多
In this study, the transmission capacity of VANETs in a highway scenario is analysed on the basis of a 1D line model and the carrier sense multiple access with collision avoidance(CSMA/CA) protocol. We describe the CS...In this study, the transmission capacity of VANETs in a highway scenario is analysed on the basis of a 1D line model and the carrier sense multiple access with collision avoidance(CSMA/CA) protocol. We describe the CSMA/CA protocol used in IEEE802.11 p from the perspective of the geometric relationship amongst simultaneous transmitters. The desired channel and interfering channels are assumed to experience the same amount of path-loss and Rayleigh fading. On the basis of the proposed model, we analyse the attempted transmission probability of each road segment and the maximum intensity of active transmitters, including their theoretical values. Then, we employ the physical model to obtain the outage probability and derive the upper bound of the transmission capacity of a VANET, which is defined as the average spatial density of successful transmissions in the network. Simulation results indicate that the theoretical value offers a good bound on network capacity.展开更多
The transmission capacity of gas pipeline networks should be calculated and allocated to deal with the capacity booking with shippers. Technical capacities, which depend on the gas flow distribution at routes or inter...The transmission capacity of gas pipeline networks should be calculated and allocated to deal with the capacity booking with shippers. Technical capacities, which depend on the gas flow distribution at routes or interchange points, are calculated with a multiobjective optimization model and form a Pareto solution set in the entry/exit or point-to-point regime. Then, the commercial capacities, which can be directly applied in capacity booking, are calculated with single-objective optimization models that are transformed from the above multiobjective model based on three allocation rules and the demand of shippers.Next, peak-shaving capacities, which are daily oversupply or overdelivery amounts at inlets or deliveries,are calculated with two-stage transient optimization models. Considering the hydraulic process of a pipeline network and operating schemes of compressor stations, all the above models are mixed-integer nonlinear programming problems. Finally, a case study is made to demonstrate the ability of the models.展开更多
This paper presents an approximate expression to transmission capacity of ad hoc networks by using stochastic geometry. For there is no general close-form expression to the transmission capacity of ad hoc networks, by...This paper presents an approximate expression to transmission capacity of ad hoc networks by using stochastic geometry. For there is no general close-form expression to the transmission capacity of ad hoc networks, by using Taylor series, we obtain the exact series expression to transmission capacity first, then we take partial summation to yield an n-th order approximate expression. Further- more, compared with the exact expression under a special case, the accuracy of the n-th order ap- proximation has been studied. The numerical results show that the accuracy of the approximation is mainly determined by the order n, and a high accuracy can be obtained when the node density or the outage constraint is close to zero .展开更多
The transmission capacity of Mobile Ad Hoc Networking (MANET) is constrained by the mutual interference of concurrent transmissions between nodes. First, the transmission capacity of MANET is studied by the view of in...The transmission capacity of Mobile Ad Hoc Networking (MANET) is constrained by the mutual interference of concurrent transmissions between nodes. First, the transmission capacity of MANET is studied by the view of information flow between nodes. At the same time, the problem that the interference between nodes affects the transmission capacity of MANET is also studied by the tool of the event conflict graph. Secondly, the paper presents the method to compute the maximum ex- pectant achievable capacity for the given conflict graph, and concludes and proves an sufficient con- dition that the information flow transmit successfully between nodes. At last, the results are simulated and a fitting equation of transmission capacity between nodes is given.展开更多
In order to expand the introduction amount of renewable energy,it is necessary to solve various problems such as suppression of output fluctuation,cost of power supply compensator for reducing output fluctuation,and l...In order to expand the introduction amount of renewable energy,it is necessary to solve various problems such as suppression of output fluctuation,cost of power supply compensator for reducing output fluctuation,and lack of transmission capacity.On the other hand,it is known that output fluctuation of renewable energy is leveled by interconnecting renewable energy dispersedly arranged in a wide area.Therefore,it is possible to reduce the cost of the system by optimally distributing and linking the renewable energy to a wide area.Therefore,in this study,we developed computer algorithms to optimize the location and introduction amount of renewable energy that will conduct wide area interconnections based on actual transmission network equipment.The target of the analysis was the Hokkaido area in Japan with extensive land and abundant natural energy.Using the proposed algorithm,we evaluate the relationship between economical renewable energy location and capacity,renewable energy supply rate and grid capacity.As a result,it was possible to realize an economical power system with a high percentage power supply ratio of renewable energy.展开更多
We study the transmission capacities of two coexisting spread-spectrum wireless networks (a primary network vs. a secondary network) that operate in the same geographic region and share the same spectrum. We defi ne t...We study the transmission capacities of two coexisting spread-spectrum wireless networks (a primary network vs. a secondary network) that operate in the same geographic region and share the same spectrum. We defi ne transmission capacity as the product among the density of transmissions, the transmission rate, and the successful transmission probability. The primary (PR) network has a higher priority to access the spectrum without particular considerations for the secondary (SR) network, while the SR network limits its interference to the PR network by carefully controlling the density ofits transmitters. Considering two types of spread-spectrum transmission schemes (FH-CDMA and DS-CDMA) and the channel inversion power control mechanism, we quantify the transmission capacities for these two networks based on asymptotic analysis. Our results show that if the PR network permits a small increase ofits outage probability, the sum transmission capacities of the two networks (i.e., the overall spectrumefficiency per unit area) will be boosted significantly over that of a single network.展开更多
In this paper,the transmission performances are studied in cognitive radio networks with primary user emulator and relay existence.In the proposed network,the users include primary users,secondary users and primary us...In this paper,the transmission performances are studied in cognitive radio networks with primary user emulator and relay existence.In the proposed network,the users include primary users,secondary users and primary user emulators.The decreasing access priority of the users are primary users,primary user emulators and secondary users.Different user access to the network results in different transmission effects.We impose interference power constraints on the secondary users to protect the primary users from being interfered.We also adopt the transmission mechanism that transits among more than one secondary transmitters,secondary receivers and relays.The transition models of the transmission states are proposed to describe the transmission mechanism.To investigate the transmission performances,the theory of effective capacity is adopted.The transmission performances in terms of effective capacity are expressed and demonstrated under different transmission policies.The overall effective capacity,as the overall data traffic in the cognitive radio network,is calculated.Besides,the overall effective capacity is demonstrated under different transmission strategies.The results show the greedy transmission strategy outperforms the rest of the transmission 8 policies in the overall effective capacity.For a larger number of the users,the effective capacity converges to a certain value.展开更多
Underwater wireless sensor networks(UWSNs) have attracted wide attention in recent years.The capacity research on it is still in the initial stage,lacking adequate performance evaluation for network construction.This ...Underwater wireless sensor networks(UWSNs) have attracted wide attention in recent years.The capacity research on it is still in the initial stage,lacking adequate performance evaluation for network construction.This paper will focus on this subject by theoretical analysis and simulation,aiming to provide some insights for the actual UWSNs construction.According to the structure features of cluster-based UWSNs and the propagation characteristics of underwater acoustic signal,with the combination of signal to interference plus noise ratio,we define some capacity performance metrics,such as outage probability and transmission capacity.Based on the theory of stochastic geometry,a network capacity analytical model used in the cluster-based UWSNs is presented.The simulation results verify the validity of the theoretical analysis,and the cause of error between theoretical and simulation results has also been clearly explained.展开更多
分频输电系统(fractional frequency transmission system,FFTS)利用较低的频率(如50/3Hz)传输电能,从而减少交流输电线路电气距离,提高系统传输能力。在水电、风电等可再生能源发电系统中,由于发电机转速较低,十分适合于利...分频输电系统(fractional frequency transmission system,FFTS)利用较低的频率(如50/3Hz)传输电能,从而减少交流输电线路电气距离,提高系统传输能力。在水电、风电等可再生能源发电系统中,由于发电机转速较低,十分适合于利用分频进行发电和输电,在并网时转换为工频。首先介绍了分频输电的原理、并网特点等。其次,利用2个案例对水电、风电经分频输电并网的可行性进行了分析。特别是对分频风力发/输电系统的优越性进行了阐述。结果表明,水电、风电经分频输电并网是一种具有经济与技术优势的方案,在可再生能源发输电领域有着很好的应用前景。展开更多
Centralized delivery has become the main operation mode under the scaled development of wind power.Transmission channels are usually the guarantee of out-delivered wind power for large-scale wind base.The configuratio...Centralized delivery has become the main operation mode under the scaled development of wind power.Transmission channels are usually the guarantee of out-delivered wind power for large-scale wind base.The configuration of transmission capacity,which has the features of low utilization and poor economy,is hardly matching correctly due to the volatility and low energy density of wind.The usage of energy storage can mitigate wind power fluctuations and reduce the requirement of out-delivery transmission capacity,but facing the issue of energy storage cost recovery.Therefore,it is necessary to optimize the allocation of energy storage while considering the problem of wind power transmission.This paper studies the joint optimization of large-scale wind power transmission capacity and energy storage,reveals the mechanism of energy storage in order to reduce the power fluctuation of wind power base and slow down the demand of transmission.Then,analyze the multi-functional cost-sharing mode of energy storage,improve the efficiency of energy storage cost recovery.Constructs the coordination optimization configuration model to deal with the problem of large-scale wind power transmission capacity and energy storage,and realizes the transmission capacity optimization coordination and optimization with energy storage.The proposed method is verified by a wind base located in Northeast China.展开更多
Recently, the multi-hop cellular networks have been widely studied in order to enhance the cell performances such as the cell capacity. While most of these works merely use the multi-hop methods instead of direct tran...Recently, the multi-hop cellular networks have been widely studied in order to enhance the cell performances such as the cell capacity. While most of these works merely use the multi-hop methods instead of direct transmission without considering the co-channel inter-cell interference, signal transmission mode and the effects of the number of antennas. With the consideration of above important elements, this paper proposed an improved cellular system with multi-relay amplifies-andforward (AF) cooperative transmission scheme and the corresponding capacity expression is derived under the corresponding environment. By using the potential space diversity and selecting relays based on maximizing the capacity, the cellular system capacity can be improved effectively. The simulation results show that with the assistance of optimal selected relays, the improved cooperative cellular system capacity with multi-relay AF transmission scheme performs better than single-hop cellular system.展开更多
This paper investigates the downlink capacity distribution and the outage probability of the interested area of maximum ratio transmission-selection combining(MRT-SC) scheme in the distributed antenna system(DAS).Comp...This paper investigates the downlink capacity distribution and the outage probability of the interested area of maximum ratio transmission-selection combining(MRT-SC) scheme in the distributed antenna system(DAS).Composite fading channels are assumed,which include path loss,lognormal shadowing and multi-path Rayleigh fading.Analytical approximations of the capacity's cumulative distribution function(CDF),the outage capacity,the mean capacity,and the outage probability of the interested area are derived by means of moment generation function(MGF) and Gauss-Hermite series expansion based approaches.The influence of antenna number,path loss exponent,and shadowing standard deviation on the capacity distribution are investigated.The simulation results agree with the analytical approximations well,and thus the analytical approximations are able to substitute the time-intensive Monte Carlo simulation for further investigation.展开更多
The integration of cognitive radio and Ultra wideband (UWB) networks has attracted lots of research interests. Cognitive UWB networks not only provide very high data rates but also guarantee the uninterrupted communic...The integration of cognitive radio and Ultra wideband (UWB) networks has attracted lots of research interests. Cognitive UWB networks not only provide very high data rates but also guarantee the uninterrupted communication of primary system operated in the same frequency band. In this work, the problem of the capacity analyses of cognitive UWB networks is investigated. Different from the conventional cognitive spectrum sharing model which can only utilize the idle spectrum hole, the cognitive UWB system can operate adaptively based on spectrum sensing results. Taking into account several factors such as the transmission power constraint of UWB, the interference constraint of the receivers in primary systems, the secondary UWB network capacity problem is modeled as a convex optimization problem over the transmission power. The optimal power allocation strategy and algorithm are derived based on this optimization problem. Two cases (Perfect Spectrum Sensing and Imperfect Spectrum Sensing) are studied in the paper. Numerical simulation results show that the proposed adaptive power allocationscheme improves the ergodic and outage capacity under both transmission power and interference constraints compared with constant transmission power scheme.展开更多
The famous claim that we only use about 10% of the brain capacity has recently been challenged. Researchers argue that we are likely to use the whole brain, against the 10% claim. Some evidence and results from releva...The famous claim that we only use about 10% of the brain capacity has recently been challenged. Researchers argue that we are likely to use the whole brain, against the 10% claim. Some evidence and results from relevant studies and experiments related to memory in the field of neuroscience lead to the conclusion that if the rest 90% of the brain is not used, then many neural pathways will degenerate. What is memory? How does the brain function? What would be the limit of memory capacity? This article provides a model established upon the physiological and neurological characteristics of the human brain, which can give some theoretical support and scientific explanation to explain some phenomena. It may not only have theoretically significance in neuroscience, but can also be practically useful to fill in the gap between the natural and machine intelligence.展开更多
Power systems are critical infrastructures in the same way as gas and oil networks, water networks, transportation networks, telecommunications systems and computer systems. These complex networked systems are increas...Power systems are critical infrastructures in the same way as gas and oil networks, water networks, transportation networks, telecommunications systems and computer systems. These complex networked systems are increasingly interdependent on each other, as the digital society matures on a global scale. A typical example of a critical infrastructure vulnerability that undergoes rising vulnerability to catastrophic failure is the power transmission network. There are several reasons for such a situation to prevail. Firstly, as witnessed in developed countries, there has been a very slow expansion of the high voltage transmission grid during recent decades due to stringent regulations put forward in response to environmental concerns. Secondly, there are the profound structural reforms that the power industry has embarked on, which are geared toward the emergence and consolidation of competitive energy markets. In the evaluation of catastrophe of the power transmission system, the most important parameter to be taken into a consideration is resilience index of electro-magnet floury. In particular, it has been taken into consideration its effect on the different fields of human interest.展开更多
Accomodation of power system constraints with the market mechanism is encountered as a major challenge along the way toward implementation of different electricity market designs. Allocation of fixe or flow-dependent ...Accomodation of power system constraints with the market mechanism is encountered as a major challenge along the way toward implementation of different electricity market designs. Allocation of fixe or flow-dependent inter-zone trading capacities by the PX (power exchange) can not be accepted unreservedly. The paper is meant to show that a nodal electricity market design that is based on bids for local energy and a regulated transmission access including allocation of "entry-exit" transmission capacity would be the desired solution. The market players could easily optimize their portfolio while the TSOs (transmission system operators) are requested to mobilize the network's in-built flexibility to increase the cross zonal capacity. In the proposed market design, the PX's allocation of trading capacity is clearly separate from the TSO's management of the power system operational constraint5. Clear operator roles would enlarge access to electricity market as well as market integration of variable RESs (renewable energy sources) that are critically dependent on short notice access to regionat markets,展开更多
This article puts forward a new solution to the bound of the outage probability and transmission capacity of Ad-hoc networks. For the proofs of the upper and lower bounds are too complex, a much easier way is introduc...This article puts forward a new solution to the bound of the outage probability and transmission capacity of Ad-hoc networks. For the proofs of the upper and lower bounds are too complex, a much easier way is introduced to get the same results, and by using Taylor series, the asymptotic bound is derived. By comparing with the simulation results, we found that the asymptotic bound is sufficient accurate when the network parameters are selected properly, and is tighter than the upper and lower bounds.展开更多
In the analysis of overlaid wireless Ad-hoc networks, the underlying node distributions are commonly assumed to be two independent homogeneous Poisson point processes. In this paper, by using stochastic geometry tools...In the analysis of overlaid wireless Ad-hoc networks, the underlying node distributions are commonly assumed to be two independent homogeneous Poisson point processes. In this paper, by using stochastic geometry tools, a new inhomogeneous overlaid wireless Ad-hoc network model is studied and the outage probability are analyzed. By assuming that primary (PR) network nodes are distributed as a Poisson point process (PPP) and secondary (SR) network nodes are distributed as a Matern cluster processes, an upper and a lower bounds for the transmission capacity of the primary network and that of the secondary network are presented. Simulation results show that the transmission capacity of the PR and SR network will both have a small increment due to the inhomogeneity of the SR network.展开更多
基金supported by State Grid Corporation’s Science and Technology Project“Research and Demonstration of Technical Measures for Improving Voltage Supporting Capacity of Large-scale Urban Power Grid”(52094016000Y)
文摘A unified power flow controller(UPFC)combines the advantages of various flexible alternating current transmission system(FACTS)devices into a powerful format.Using a 500 kV power grid,this study evaluates the selection and use of a UPFC to improve transmission capacity.The"UPFC unit capacity control proportionality coefficient"is introduced to quantify the control effect of the UPFC,and an optimal calculation method for the UPFC capacity is presented.Following the proposal of a UPFC site selection process,the data of an existing power grid is used to conduct simulations.The simulation results show that the UPFC has a strong ability to improve transmission capacity,and its use is greatly advantageous.Additionally,by applying the proposed selection method,the control effect and economic benefits of the UPFC can be comprehensively considered during project site selection.These findings have a guiding significance for UPFC site selection in ultra-high voltage power grids.
基金supported in part by the National Natural Science Foundation of China under Grant No.61271184 and 61571065
文摘In this study, the transmission capacity of VANETs in a highway scenario is analysed on the basis of a 1D line model and the carrier sense multiple access with collision avoidance(CSMA/CA) protocol. We describe the CSMA/CA protocol used in IEEE802.11 p from the perspective of the geometric relationship amongst simultaneous transmitters. The desired channel and interfering channels are assumed to experience the same amount of path-loss and Rayleigh fading. On the basis of the proposed model, we analyse the attempted transmission probability of each road segment and the maximum intensity of active transmitters, including their theoretical values. Then, we employ the physical model to obtain the outage probability and derive the upper bound of the transmission capacity of a VANET, which is defined as the average spatial density of successful transmissions in the network. Simulation results indicate that the theoretical value offers a good bound on network capacity.
文摘The transmission capacity of gas pipeline networks should be calculated and allocated to deal with the capacity booking with shippers. Technical capacities, which depend on the gas flow distribution at routes or interchange points, are calculated with a multiobjective optimization model and form a Pareto solution set in the entry/exit or point-to-point regime. Then, the commercial capacities, which can be directly applied in capacity booking, are calculated with single-objective optimization models that are transformed from the above multiobjective model based on three allocation rules and the demand of shippers.Next, peak-shaving capacities, which are daily oversupply or overdelivery amounts at inlets or deliveries,are calculated with two-stage transient optimization models. Considering the hydraulic process of a pipeline network and operating schemes of compressor stations, all the above models are mixed-integer nonlinear programming problems. Finally, a case study is made to demonstrate the ability of the models.
文摘This paper presents an approximate expression to transmission capacity of ad hoc networks by using stochastic geometry. For there is no general close-form expression to the transmission capacity of ad hoc networks, by using Taylor series, we obtain the exact series expression to transmission capacity first, then we take partial summation to yield an n-th order approximate expression. Further- more, compared with the exact expression under a special case, the accuracy of the n-th order ap- proximation has been studied. The numerical results show that the accuracy of the approximation is mainly determined by the order n, and a high accuracy can be obtained when the node density or the outage constraint is close to zero .
文摘The transmission capacity of Mobile Ad Hoc Networking (MANET) is constrained by the mutual interference of concurrent transmissions between nodes. First, the transmission capacity of MANET is studied by the view of information flow between nodes. At the same time, the problem that the interference between nodes affects the transmission capacity of MANET is also studied by the tool of the event conflict graph. Secondly, the paper presents the method to compute the maximum ex- pectant achievable capacity for the given conflict graph, and concludes and proves an sufficient con- dition that the information flow transmit successfully between nodes. At last, the results are simulated and a fitting equation of transmission capacity between nodes is given.
文摘In order to expand the introduction amount of renewable energy,it is necessary to solve various problems such as suppression of output fluctuation,cost of power supply compensator for reducing output fluctuation,and lack of transmission capacity.On the other hand,it is known that output fluctuation of renewable energy is leveled by interconnecting renewable energy dispersedly arranged in a wide area.Therefore,it is possible to reduce the cost of the system by optimally distributing and linking the renewable energy to a wide area.Therefore,in this study,we developed computer algorithms to optimize the location and introduction amount of renewable energy that will conduct wide area interconnections based on actual transmission network equipment.The target of the analysis was the Hokkaido area in Japan with extensive land and abundant natural energy.Using the proposed algorithm,we evaluate the relationship between economical renewable energy location and capacity,renewable energy supply rate and grid capacity.As a result,it was possible to realize an economical power system with a high percentage power supply ratio of renewable energy.
基金supported in part by the China 863 Program grants 2007AA10Z235, 2007AA01Z179, 2006BAJ09B05, 2008BADA0B05the NSFC grants 60972073, 60871042, 60872049, and 60971082+1 种基金the China National Great Science Specifi c Project grant 2009ZX03003-011the China 973 Program grant 2009CB320407
文摘We study the transmission capacities of two coexisting spread-spectrum wireless networks (a primary network vs. a secondary network) that operate in the same geographic region and share the same spectrum. We defi ne transmission capacity as the product among the density of transmissions, the transmission rate, and the successful transmission probability. The primary (PR) network has a higher priority to access the spectrum without particular considerations for the secondary (SR) network, while the SR network limits its interference to the PR network by carefully controlling the density ofits transmitters. Considering two types of spread-spectrum transmission schemes (FH-CDMA and DS-CDMA) and the channel inversion power control mechanism, we quantify the transmission capacities for these two networks based on asymptotic analysis. Our results show that if the PR network permits a small increase ofits outage probability, the sum transmission capacities of the two networks (i.e., the overall spectrumefficiency per unit area) will be boosted significantly over that of a single network.
基金supported by National Natural Science Foundation of China(No.61379016)
文摘In this paper,the transmission performances are studied in cognitive radio networks with primary user emulator and relay existence.In the proposed network,the users include primary users,secondary users and primary user emulators.The decreasing access priority of the users are primary users,primary user emulators and secondary users.Different user access to the network results in different transmission effects.We impose interference power constraints on the secondary users to protect the primary users from being interfered.We also adopt the transmission mechanism that transits among more than one secondary transmitters,secondary receivers and relays.The transition models of the transmission states are proposed to describe the transmission mechanism.To investigate the transmission performances,the theory of effective capacity is adopted.The transmission performances in terms of effective capacity are expressed and demonstrated under different transmission policies.The overall effective capacity,as the overall data traffic in the cognitive radio network,is calculated.Besides,the overall effective capacity is demonstrated under different transmission strategies.The results show the greedy transmission strategy outperforms the rest of the transmission 8 policies in the overall effective capacity.For a larger number of the users,the effective capacity converges to a certain value.
基金supported by National Natural Science Foundation of China(No.61101164)
文摘Underwater wireless sensor networks(UWSNs) have attracted wide attention in recent years.The capacity research on it is still in the initial stage,lacking adequate performance evaluation for network construction.This paper will focus on this subject by theoretical analysis and simulation,aiming to provide some insights for the actual UWSNs construction.According to the structure features of cluster-based UWSNs and the propagation characteristics of underwater acoustic signal,with the combination of signal to interference plus noise ratio,we define some capacity performance metrics,such as outage probability and transmission capacity.Based on the theory of stochastic geometry,a network capacity analytical model used in the cluster-based UWSNs is presented.The simulation results verify the validity of the theoretical analysis,and the cause of error between theoretical and simulation results has also been clearly explained.
文摘分频输电系统(fractional frequency transmission system,FFTS)利用较低的频率(如50/3Hz)传输电能,从而减少交流输电线路电气距离,提高系统传输能力。在水电、风电等可再生能源发电系统中,由于发电机转速较低,十分适合于利用分频进行发电和输电,在并网时转换为工频。首先介绍了分频输电的原理、并网特点等。其次,利用2个案例对水电、风电经分频输电并网的可行性进行了分析。特别是对分频风力发/输电系统的优越性进行了阐述。结果表明,水电、风电经分频输电并网是一种具有经济与技术优势的方案,在可再生能源发输电领域有着很好的应用前景。
基金supported by the National Key Research and Development Program(2016YFB0900100)。
文摘Centralized delivery has become the main operation mode under the scaled development of wind power.Transmission channels are usually the guarantee of out-delivered wind power for large-scale wind base.The configuration of transmission capacity,which has the features of low utilization and poor economy,is hardly matching correctly due to the volatility and low energy density of wind.The usage of energy storage can mitigate wind power fluctuations and reduce the requirement of out-delivery transmission capacity,but facing the issue of energy storage cost recovery.Therefore,it is necessary to optimize the allocation of energy storage while considering the problem of wind power transmission.This paper studies the joint optimization of large-scale wind power transmission capacity and energy storage,reveals the mechanism of energy storage in order to reduce the power fluctuation of wind power base and slow down the demand of transmission.Then,analyze the multi-functional cost-sharing mode of energy storage,improve the efficiency of energy storage cost recovery.Constructs the coordination optimization configuration model to deal with the problem of large-scale wind power transmission capacity and energy storage,and realizes the transmission capacity optimization coordination and optimization with energy storage.The proposed method is verified by a wind base located in Northeast China.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Science and Technology Commission of Shanghai Municipality (Grant No.08DZ2231100)+1 种基金the Shanghai Pujiang Program (Grant No.08PJ14057)the Graduate Student Innovation Foundation of Shanghai University (Grant No.SHUCX080151)
文摘Recently, the multi-hop cellular networks have been widely studied in order to enhance the cell performances such as the cell capacity. While most of these works merely use the multi-hop methods instead of direct transmission without considering the co-channel inter-cell interference, signal transmission mode and the effects of the number of antennas. With the consideration of above important elements, this paper proposed an improved cellular system with multi-relay amplifies-andforward (AF) cooperative transmission scheme and the corresponding capacity expression is derived under the corresponding environment. By using the potential space diversity and selecting relays based on maximizing the capacity, the cellular system capacity can be improved effectively. The simulation results show that with the assistance of optimal selected relays, the improved cooperative cellular system capacity with multi-relay AF transmission scheme performs better than single-hop cellular system.
文摘This paper investigates the downlink capacity distribution and the outage probability of the interested area of maximum ratio transmission-selection combining(MRT-SC) scheme in the distributed antenna system(DAS).Composite fading channels are assumed,which include path loss,lognormal shadowing and multi-path Rayleigh fading.Analytical approximations of the capacity's cumulative distribution function(CDF),the outage capacity,the mean capacity,and the outage probability of the interested area are derived by means of moment generation function(MGF) and Gauss-Hermite series expansion based approaches.The influence of antenna number,path loss exponent,and shadowing standard deviation on the capacity distribution are investigated.The simulation results agree with the analytical approximations well,and thus the analytical approximations are able to substitute the time-intensive Monte Carlo simulation for further investigation.
基金supported by following projects:NSFC (No. 60432040, 60972079)Beijing Natural Science Foundation (No. 4052021)+1 种基金The Research Fund for the Doctoral Program of Higher Education(No.20060013008, 200700130293)UWB-ITRC Inha University, Korea,and iCHIP Project financed by Italian Ministry of Foreign Affairs,And it is partly supported by Project iCHIP financed by Italian Ministry of Foreign Affairs
文摘The integration of cognitive radio and Ultra wideband (UWB) networks has attracted lots of research interests. Cognitive UWB networks not only provide very high data rates but also guarantee the uninterrupted communication of primary system operated in the same frequency band. In this work, the problem of the capacity analyses of cognitive UWB networks is investigated. Different from the conventional cognitive spectrum sharing model which can only utilize the idle spectrum hole, the cognitive UWB system can operate adaptively based on spectrum sensing results. Taking into account several factors such as the transmission power constraint of UWB, the interference constraint of the receivers in primary systems, the secondary UWB network capacity problem is modeled as a convex optimization problem over the transmission power. The optimal power allocation strategy and algorithm are derived based on this optimization problem. Two cases (Perfect Spectrum Sensing and Imperfect Spectrum Sensing) are studied in the paper. Numerical simulation results show that the proposed adaptive power allocationscheme improves the ergodic and outage capacity under both transmission power and interference constraints compared with constant transmission power scheme.
文摘The famous claim that we only use about 10% of the brain capacity has recently been challenged. Researchers argue that we are likely to use the whole brain, against the 10% claim. Some evidence and results from relevant studies and experiments related to memory in the field of neuroscience lead to the conclusion that if the rest 90% of the brain is not used, then many neural pathways will degenerate. What is memory? How does the brain function? What would be the limit of memory capacity? This article provides a model established upon the physiological and neurological characteristics of the human brain, which can give some theoretical support and scientific explanation to explain some phenomena. It may not only have theoretically significance in neuroscience, but can also be practically useful to fill in the gap between the natural and machine intelligence.
基金partly supported by Ministry of Education and Science of Republic of Serbia(III42010 and TR33050).
文摘Power systems are critical infrastructures in the same way as gas and oil networks, water networks, transportation networks, telecommunications systems and computer systems. These complex networked systems are increasingly interdependent on each other, as the digital society matures on a global scale. A typical example of a critical infrastructure vulnerability that undergoes rising vulnerability to catastrophic failure is the power transmission network. There are several reasons for such a situation to prevail. Firstly, as witnessed in developed countries, there has been a very slow expansion of the high voltage transmission grid during recent decades due to stringent regulations put forward in response to environmental concerns. Secondly, there are the profound structural reforms that the power industry has embarked on, which are geared toward the emergence and consolidation of competitive energy markets. In the evaluation of catastrophe of the power transmission system, the most important parameter to be taken into a consideration is resilience index of electro-magnet floury. In particular, it has been taken into consideration its effect on the different fields of human interest.
文摘Accomodation of power system constraints with the market mechanism is encountered as a major challenge along the way toward implementation of different electricity market designs. Allocation of fixe or flow-dependent inter-zone trading capacities by the PX (power exchange) can not be accepted unreservedly. The paper is meant to show that a nodal electricity market design that is based on bids for local energy and a regulated transmission access including allocation of "entry-exit" transmission capacity would be the desired solution. The market players could easily optimize their portfolio while the TSOs (transmission system operators) are requested to mobilize the network's in-built flexibility to increase the cross zonal capacity. In the proposed market design, the PX's allocation of trading capacity is clearly separate from the TSO's management of the power system operational constraint5. Clear operator roles would enlarge access to electricity market as well as market integration of variable RESs (renewable energy sources) that are critically dependent on short notice access to regionat markets,
基金supported by the National Natural Science Foundation of China (60972073,60872049,60871042,and 60971082)the National Basic Research Program of China (2009CB320407)the National Great Science Specific Project (2010ZX03001-003)
文摘This article puts forward a new solution to the bound of the outage probability and transmission capacity of Ad-hoc networks. For the proofs of the upper and lower bounds are too complex, a much easier way is introduced to get the same results, and by using Taylor series, the asymptotic bound is derived. By comparing with the simulation results, we found that the asymptotic bound is sufficient accurate when the network parameters are selected properly, and is tighter than the upper and lower bounds.
基金supported by the National Natural Science Foundation of China (60972073, 61271257)the Hi-Tech Research and Development Program Of China (2011AA100706)+1 种基金Beijing Scientific and Technological Program (D111100001011002)the Beijing Natural Science Foundation (4122034)
文摘In the analysis of overlaid wireless Ad-hoc networks, the underlying node distributions are commonly assumed to be two independent homogeneous Poisson point processes. In this paper, by using stochastic geometry tools, a new inhomogeneous overlaid wireless Ad-hoc network model is studied and the outage probability are analyzed. By assuming that primary (PR) network nodes are distributed as a Poisson point process (PPP) and secondary (SR) network nodes are distributed as a Matern cluster processes, an upper and a lower bounds for the transmission capacity of the primary network and that of the secondary network are presented. Simulation results show that the transmission capacity of the PR and SR network will both have a small increment due to the inhomogeneity of the SR network.