In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, ...In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas.展开更多
A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigate...A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.展开更多
The bending and free vibrational behaviors of functionally graded(FG)cylindrical beams with radially and axially varying material inhomogeneities are investigated.Based on a high-order cylindrical beam model,where the...The bending and free vibrational behaviors of functionally graded(FG)cylindrical beams with radially and axially varying material inhomogeneities are investigated.Based on a high-order cylindrical beam model,where the shear deformation and rotary inertia are both considered,the two coupled governing differential motion equations for the deflection and rotation are established.The analytical bending solutions for various boundary conditions are derived.In the vibrational analysis of FG cylindrical beams,the two governing equations are firstly changed to a single equation by means of an auxiliary function,and then the vibration mode is expanded into shifted Chebyshev polynomials.Numerical examples are given to investigate the effects of the material gradient indices on the deflections,the stress distributions,and the eigenfrequencies of the cylindrical beams,respectively.By comparing the obtained numerical results with those obtained by the three-dimensional(3D)elasticity theory and the Timoshenko beam theory,the effectiveness of the present approach is verified.展开更多
Electron beam lithography(EBL)involves the transfer of a pattern onto the surface of a substrate byfirst scanning a thin layer of organicfilm(called resist)on the surface by a tightly focused and precisely controlled el...Electron beam lithography(EBL)involves the transfer of a pattern onto the surface of a substrate byfirst scanning a thin layer of organicfilm(called resist)on the surface by a tightly focused and precisely controlled electron beam(exposure)and then selectively removing the exposed or nonexposed regions of the resist in a solvent(developing).It is widely used for fabrication of integrated cir-cuits,mask manufacturing,photoelectric device processing,and otherfields.The key to drawing circular patterns by EBL is the graphics production and control.In an EBL system,an embedded processor calculates and generates the trajectory coordinates for movement of the electron beam,and outputs the corresponding voltage signal through a digital-to-analog converter(DAC)to control a deflector that changes the position of the electron beam.Through this procedure,it is possible to guarantee the accuracy and real-time con-trol of electron beam scanning deflection.Existing EBL systems mostly use the method of polygonal approximation to expose circles.A circle is divided into several polygons,and the smaller the segmentation,the higher is the precision of the splicing circle.However,owing to the need to generate and scan each polygon separately,an increase in the number of segments will lead to a decrease in the overall lithography speed.In this paper,based on Bresenham’s circle algorithm and exploiting the capabilities of afield-programmable gate array and DAC,an improved real-time circle-producing algorithm is designed for EBL.The algorithm can directly generate cir-cular graphics coordinates such as those for a single circle,solid circle,solid ring,or concentric ring,and is able to effectively realizes deflection and scanning of the electron beam for circular graphics lithography.Compared with the polygonal approximation method,the improved algorithm exhibits improved precision and speed.At the same time,the point generation strategy is optimized to solve the blank pixel and pseudo-pixel problems that arise with Bresenham’s circle algorithm.A complete electron beam deflection system is established to carry out lithography experiments,the results of which show that the error between the exposure results and the preset pat-terns is at the nanometer level,indicating that the improved algorithm meets the requirements for real-time control and high precision of EBL.展开更多
We present new data on the^(63)Cu(γ,n)cross-section studied using a quasi-monochromatic and energy-tunableγbeam produced at the Shanghai Laser Electron Gamma Source to resolve the long-standing discrepancy between e...We present new data on the^(63)Cu(γ,n)cross-section studied using a quasi-monochromatic and energy-tunableγbeam produced at the Shanghai Laser Electron Gamma Source to resolve the long-standing discrepancy between existing measurements and evaluations of this cross-section.Using an unfolding iteration method,^(63)Cu(γ,n)data were obtained with an uncertainty of less than 4%,and the inconsistencies between the available experimental data were discussed.Theγ-ray strength function of^(63)Cu(γ,n)was successfully extracted as an experimental constraint.We further calculated the cross-section of the radiative neutron capture reaction^(62)Cu(n,γ)using the TALYS code.Our calculation method enables the extraction of(n,γ)cross-sections for unstable nuclides.展开更多
For the static analysis of the sinking stage curved beam, a finite difference model was presented based on the proposed revised Vlasov equations. First, revised Vlasov equations for thin-walled curved beams with close...For the static analysis of the sinking stage curved beam, a finite difference model was presented based on the proposed revised Vlasov equations. First, revised Vlasov equations for thin-walled curved beams with closed sections were deduced considering the shear strain on the mid-surface of the cross-section. Then, the finite difference formulation of revised Vlasov equations was implemented with the parabolic interpolation based on Taylor series. At last, the finite difference model was built by substituting geometry and boundary conditions of the sinking stage curved beam into the finite difference formulation. The validity of present work is confirmed by the published literature and ANSYS simulation results. It can be concluded that revised Vlasov equations are more accurate than the original one in the analysis of thin-walled beams with closed sections, and that present finite difference model is applicable in the evaluation of the sinking stage curved beam.展开更多
Over the past decades, low-energy electron accelerators have been used worldwide for surface curing and sterilization. The beam nonuniformity is an important parameter of the low-energy electron beam with large cross-...Over the past decades, low-energy electron accelerators have been used worldwide for surface curing and sterilization. The beam nonuniformity is an important parameter of the low-energy electron beam with large cross-sections. A simple and accurate measurement system of nonuniformity for the low-energy electron beam with large cross-sections was developed. The main concept consists in the measurement of nonuniformity, which is realized by using a linear actuator to drive two scanning wires through the beam's cross-sections at a fixed speed. The beam distribution can be obtained by sending/collecting the current signals to/from the Data Acquisition (DAQ) software on a laptop by a USB DAQ card. This device is very convenient for the performance testing of a new accelerator at the manufacturer's site. The distribution of the homemade low voltage electron accelerator EBS-300-50 was measured and evaluated.展开更多
基金Sponsored by the Subsidization Plan for Outstanding Young Teacher of Ministry of Education
文摘In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas.
文摘A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.
基金Project supported by the Natural Science Foundation of Guangdong Province of China(No.2018A030313258)。
文摘The bending and free vibrational behaviors of functionally graded(FG)cylindrical beams with radially and axially varying material inhomogeneities are investigated.Based on a high-order cylindrical beam model,where the shear deformation and rotary inertia are both considered,the two coupled governing differential motion equations for the deflection and rotation are established.The analytical bending solutions for various boundary conditions are derived.In the vibrational analysis of FG cylindrical beams,the two governing equations are firstly changed to a single equation by means of an auxiliary function,and then the vibration mode is expanded into shifted Chebyshev polynomials.Numerical examples are given to investigate the effects of the material gradient indices on the deflections,the stress distributions,and the eigenfrequencies of the cylindrical beams,respectively.By comparing the obtained numerical results with those obtained by the three-dimensional(3D)elasticity theory and the Timoshenko beam theory,the effectiveness of the present approach is verified.
基金supported by the Focused Ion Beam/Electron Beam Double Beam Microscopy(Grant No.2021YFF0704702).
文摘Electron beam lithography(EBL)involves the transfer of a pattern onto the surface of a substrate byfirst scanning a thin layer of organicfilm(called resist)on the surface by a tightly focused and precisely controlled electron beam(exposure)and then selectively removing the exposed or nonexposed regions of the resist in a solvent(developing).It is widely used for fabrication of integrated cir-cuits,mask manufacturing,photoelectric device processing,and otherfields.The key to drawing circular patterns by EBL is the graphics production and control.In an EBL system,an embedded processor calculates and generates the trajectory coordinates for movement of the electron beam,and outputs the corresponding voltage signal through a digital-to-analog converter(DAC)to control a deflector that changes the position of the electron beam.Through this procedure,it is possible to guarantee the accuracy and real-time con-trol of electron beam scanning deflection.Existing EBL systems mostly use the method of polygonal approximation to expose circles.A circle is divided into several polygons,and the smaller the segmentation,the higher is the precision of the splicing circle.However,owing to the need to generate and scan each polygon separately,an increase in the number of segments will lead to a decrease in the overall lithography speed.In this paper,based on Bresenham’s circle algorithm and exploiting the capabilities of afield-programmable gate array and DAC,an improved real-time circle-producing algorithm is designed for EBL.The algorithm can directly generate cir-cular graphics coordinates such as those for a single circle,solid circle,solid ring,or concentric ring,and is able to effectively realizes deflection and scanning of the electron beam for circular graphics lithography.Compared with the polygonal approximation method,the improved algorithm exhibits improved precision and speed.At the same time,the point generation strategy is optimized to solve the blank pixel and pseudo-pixel problems that arise with Bresenham’s circle algorithm.A complete electron beam deflection system is established to carry out lithography experiments,the results of which show that the error between the exposure results and the preset pat-terns is at the nanometer level,indicating that the improved algorithm meets the requirements for real-time control and high precision of EBL.
基金supported by the National Key Research and Development Program(Nos.2023YFA1606901 and 2022YFA1602400)National Natural Science Foundation of China(Nos.U2230133,12275338,and 12388102)Open Fund of the CIAE Key Laboratory of Nuclear Data(No.JCKY2022201C152).
文摘We present new data on the^(63)Cu(γ,n)cross-section studied using a quasi-monochromatic and energy-tunableγbeam produced at the Shanghai Laser Electron Gamma Source to resolve the long-standing discrepancy between existing measurements and evaluations of this cross-section.Using an unfolding iteration method,^(63)Cu(γ,n)data were obtained with an uncertainty of less than 4%,and the inconsistencies between the available experimental data were discussed.Theγ-ray strength function of^(63)Cu(γ,n)was successfully extracted as an experimental constraint.We further calculated the cross-section of the radiative neutron capture reaction^(62)Cu(n,γ)using the TALYS code.Our calculation method enables the extraction of(n,γ)cross-sections for unstable nuclides.
基金Project(IRT1292)supported by Fund for Changjiang Scholars and Innovative Research Team in University(PCSIRT)China+2 种基金Project(51475456)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education InstitutionsChina
文摘For the static analysis of the sinking stage curved beam, a finite difference model was presented based on the proposed revised Vlasov equations. First, revised Vlasov equations for thin-walled curved beams with closed sections were deduced considering the shear strain on the mid-surface of the cross-section. Then, the finite difference formulation of revised Vlasov equations was implemented with the parabolic interpolation based on Taylor series. At last, the finite difference model was built by substituting geometry and boundary conditions of the sinking stage curved beam into the finite difference formulation. The validity of present work is confirmed by the published literature and ANSYS simulation results. It can be concluded that revised Vlasov equations are more accurate than the original one in the analysis of thin-walled beams with closed sections, and that present finite difference model is applicable in the evaluation of the sinking stage curved beam.
文摘Over the past decades, low-energy electron accelerators have been used worldwide for surface curing and sterilization. The beam nonuniformity is an important parameter of the low-energy electron beam with large cross-sections. A simple and accurate measurement system of nonuniformity for the low-energy electron beam with large cross-sections was developed. The main concept consists in the measurement of nonuniformity, which is realized by using a linear actuator to drive two scanning wires through the beam's cross-sections at a fixed speed. The beam distribution can be obtained by sending/collecting the current signals to/from the Data Acquisition (DAQ) software on a laptop by a USB DAQ card. This device is very convenient for the performance testing of a new accelerator at the manufacturer's site. The distribution of the homemade low voltage electron accelerator EBS-300-50 was measured and evaluated.