Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct...Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.展开更多
BACKGROUND Colorectal polyps(CPs)are frequently occurring abnormal growths in the colorectum,and are a primary precursor of colorectal cancer(CRC).The triglyceride-glucose(TyG)index is a novel marker that assesses met...BACKGROUND Colorectal polyps(CPs)are frequently occurring abnormal growths in the colorectum,and are a primary precursor of colorectal cancer(CRC).The triglyceride-glucose(TyG)index is a novel marker that assesses metabolic health and insulin resistance,and has been linked to gastrointestinal cancers.AIM To investigate the potential association between the TyG index and CPs,as the relation between them has not been documented.METHODS A total of 2537 persons undergoing a routine health physical examination and colonoscopy at The First People's Hospital of Kunshan,Jiangsu Province,China,between January 2020 and December 2022 were included in this retrospective cross-sectional study.After excluding individuals who did not meet the eligibility criteria,descriptive statistics were used to compare characteristics between patients with and without CPs.Logistic regression analyses were conducted to determine the associations between the TyG index and the prevalence of CPs.The TyG index was calculated using the following formula:Ln[triglyceride(mg/dL)×glucose(mg/dL)/2].The presence and types of CPs was determined based on data from colonoscopy reports and pathology reports.RESULTS A nonlinear relation between the TyG index and the prevalence of CPs was identified,and exhibited a curvilinear pattern with a cut-off point of 2.31.A significant association was observed before the turning point,with an odds ratio(95% confidence interval)of 1.70(1.40,2.06),P<0.0001.However,the association between the TyG index and CPs was not significant after the cut-off point,with an odds ratio(95% confidence interval)of 0.57(0.27,1.23),P=0.1521.CONCLUSION Our study revealed a curvilinear association between the TyG index and CPs in Chinese individuals,suggesting its potential utility in developing colonoscopy screening strategies for preventing CRC.展开更多
BACKGROUND Healthcare workers(HCWs)are at increased risk of contracting coronavirus disease 2019(COVID-19)as well as worsening mental health problems and insomnia.These problems can persist for a long period,even afte...BACKGROUND Healthcare workers(HCWs)are at increased risk of contracting coronavirus disease 2019(COVID-19)as well as worsening mental health problems and insomnia.These problems can persist for a long period,even after the pandemic.However,less is known about this topic.AIM To analyze mental health,insomnia problems,and their influencing factors in HCWs after the COVID-19 pandemic.METHODS This multicenter cross-sectional,hospital-based study was conducted from June 1,2023 to June 30,2023,which was a half-year after the end of the COVID-19 emergency.Region-stratified population-based cluster sampling was applied at the provincial level for Chinese HCWs.Symptoms such as anxiety,depression,and insomnia were evaluated by the Generalized Anxiety Disorder-7,Patient Health Questionnaire-9,and Insomnia Severity Index.Factors influencing the symptoms were identified by multivariable logistic regression.RESULTS A total of 2000 participants were invited,for a response rate of 70.6%.A total of 1412 HCWs[618(43.8%)doctors,583(41.3%)nurses and 211(14.9%)nonfrontline],254(18.0%),231(16.4%),and 289(20.5%)had symptoms of anxiety,depression,and insomnia,respectively;severe symptoms were found in 58(4.1%),49(3.5%),and 111(7.9%)of the participants.Nurses,female sex,and hospitalization for COVID-19 were risk factors for anxiety,depression,and insomnia symptoms;moreover,death from family or friends was a risk factor for insomnia symptoms.During the COVID-19 outbreak,most[1086(76.9%)]of the participating HCWs received psychological interventions,while nearly all[994(70.4%)]of them had received public psychological education.Only 102(7.2%)of the HCWs received individual counseling from COVID-19.CONCLUSION Although the mental health and sleep problems of HCWs were relieved after the COVID-19 pandemic,they still faced challenges and greater risks than did the general population.Identifying risk factors would help in providing targeted interventions.In addition,although a major proportion of HCWs have received public psychological education,individual interventions are still insufficient.展开更多
How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is pro...How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.展开更多
The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corros...The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys.展开更多
Random sample partition(RSP)is a newly developed big data representation and management model to deal with big data approximate computation problems.Academic research and practical applications have confirmed that RSP...Random sample partition(RSP)is a newly developed big data representation and management model to deal with big data approximate computation problems.Academic research and practical applications have confirmed that RSP is an efficient solution for big data processing and analysis.However,a challenge for implementing RSP is determining an appropriate sample size for RSP data blocks.While a large sample size increases the burden of big data computation,a small size will lead to insufficient distribution information for RSP data blocks.To address this problem,this paper presents a novel density estimation-based method(DEM)to determine the optimal sample size for RSP data blocks.First,a theoretical sample size is calculated based on the multivariate Dvoretzky-Kiefer-Wolfowitz(DKW)inequality by using the fixed-point iteration(FPI)method.Second,a practical sample size is determined by minimizing the validation error of a kernel density estimator(KDE)constructed on RSP data blocks for an increasing sample size.Finally,a series of persuasive experiments are conducted to validate the feasibility,rationality,and effectiveness of DEM.Experimental results show that(1)the iteration function of the FPI method is convergent for calculating the theoretical sample size from the multivariate DKW inequality;(2)the KDE constructed on RSP data blocks with sample size determined by DEM can yield a good approximation of the probability density function(p.d.f);and(3)DEM provides more accurate sample sizes than the existing sample size determination methods from the perspective of p.d.f.estimation.This demonstrates that DEM is a viable approach to deal with the sample size determination problem for big data RSP implementation.展开更多
The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components...The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future.展开更多
Objective This study aimed to explore the relationships between residential greenness and cardiometabolic risk factors among rural adults in Xinjiang Uygur Autonomous Region(Xinjiang)and thus provide a theoretical bas...Objective This study aimed to explore the relationships between residential greenness and cardiometabolic risk factors among rural adults in Xinjiang Uygur Autonomous Region(Xinjiang)and thus provide a theoretical basis and data support for improving the health of residents in this region.Methods We recruited 9,723 adult rural residents from the 51st Regiment of the Third Division of the Xinjiang Production and Construction Corps in September 2016.The normalized difference vegetation index(NDVI)was used to estimate residential greenness.The generalized linear mixed model(GLMM)was used to examine the association between residential greenness and cardiometabolic risk factors.Results Higher residential greenness was associated with lower cardiometabolic risk factor prevalence.After adjustments were made for age,sex,education,and marital status,for each interquartile range(IQR)increase of NDVI500-m,the risk of hypertension was reduced by 10.3%(OR=0.897,95%CI=0.836-0.962),the risk of obesity by 20.5%(OR=0.795,95%CI=0.695-0.910),the risk of type 2 diabetes by 15.1%(OR=0.849,95%CI=0.740-0.974),and the risk of dyslipidemia by 10.5%(OR=0.895,95%CI=0.825-0.971).Risk factor aggregation was reduced by 20.4%(OR=0.796,95%CI=0.716-0.885)for the same.Stratified analysis showed that NDVI500-m was associated more strongly with hypertension,dyslipidemia,and risk factor aggregation among male participants.The association of NDVI500-m with type 2 diabetes was stronger among participants with a higher education level.PM10 and physical activity mediated 1.9%-9.2%of the associations between NDVI500-m and obesity,dyslipidemia,and risk factor aggregation.Conclusion Higher residential greenness has a protective effect against cardiometabolic risk factors among rural residents in Xinjiang.Increasing the area of green space around residences is an effective measure to reduce the burden of cardiometabolic-related diseases among rural residents in Xinjiang.展开更多
The collision cross-sections(CCS)measurement using ion mobility spectrometry(IMS)in combination with mass spectrometry(MS)offers a great opportunity to increase confidence in metabolite identification.However,owing to...The collision cross-sections(CCS)measurement using ion mobility spectrometry(IMS)in combination with mass spectrometry(MS)offers a great opportunity to increase confidence in metabolite identification.However,owing to the lack of sensitivity and resolution,IMS has an analytical challenge in studying the CCS values of very low-molecular-weight metabolites(VLMs250 Da).Here,we describe an analytical method using ultrahigh-performance liquid chromatography(UPLC)coupled to a traveling wave ion mobility-quadrupole-time-of-flight mass spectrometer optimized for the measurement of VLMs in human urine samples.The experimental CCS values,along with mass spectral properties,were reported for the 174 metabolites.The experimental data included the mass-to-charge ratio(m/z),retention time(RT),tandem MS(MS/MS)spectra,and CCS values.Among the studied metabolites,263 traveling wave ion mobility spectrometry(TWIMS)-derived CCS values(TWCCSN2)were reported for the first time,and more than 70%of these were CCS values of VLMs.The TWCCSN2 values were highly repeatable,with inter-day variations of<1%relative standard deviation(RSD).The developed method revealed excellent TWCCSN2 accuracy with a CCS difference(DCCS)within±2%of the reported drift tube IMS(DTIMS)and TWIMS CCS values.The complexity of the urine matrix did not affect the precision of the method,as evidenced by DCCS within±1.92%.According to the Metabolomics Standards Initiative,55 urinary metabolites were identified with a confidence level of 1.Among these 55 metabolites,53(96%)were VLMs.The larger number of confirmed compounds found in this study was a result of the addition of TWCCSN2 values,which clearly increased metabolite identification confidence.展开更多
Objective To evaluate the diagnostic value of histopathological examination of ultrasound-guided puncture biopsy samples in extrapulmonary tuberculosis(EPTB).Methods This study was conducted at the Shanghai Public Hea...Objective To evaluate the diagnostic value of histopathological examination of ultrasound-guided puncture biopsy samples in extrapulmonary tuberculosis(EPTB).Methods This study was conducted at the Shanghai Public Health Clinical Center.A total of 115patients underwent ultrasound-guided puncture biopsy,followed by MGIT 960 culture(culture),smear,Gene Xpert MTB/RIF(Xpert),and histopathological examination.These assays were performed to evaluate their effectiveness in diagnosing EPTB in comparison to two different diagnostic criteria:liquid culture and composite reference standard(CRS).Results When CRS was used as the reference standard,the sensitivity and specificity of culture,smear,Xpert,and histopathological examination were(44.83%,89.29%),(51.72%,89.29%),(70.11%,96.43%),and(85.06%,82.14%),respectively.Based on liquid culture tests,the sensitivity and specificity of smear,Xpert,and pathological examination were(66.67%,72.60%),(83.33%,63.01%),and(92.86%,45.21%),respectively.Histopathological examination showed the highest sensitivity but lowest specificity.Further,we found that the combination of Xpert and histopathological examination showed a sensitivity of 90.80%and a specificity of 89.29%.Conclusion Ultrasound-guided puncture sampling is safe and effective for the diagnosis of EPTB.Compared with culture,smear,and Xpert,histopathological examination showed higher sensitivity but lower specificity.The combination of histopathology with Xpert showed the best performance characteristics.展开更多
An orthogonal 2D training image is constructed from the geological analysis results of well logs and sedimentary facies;the 2 D probabilities in three directions are obtained through linear pooling method and then agg...An orthogonal 2D training image is constructed from the geological analysis results of well logs and sedimentary facies;the 2 D probabilities in three directions are obtained through linear pooling method and then aggregated by the logarithmic linear pooling to determine the 3 D multi-point pattern probabilities at the unknown points,to realize the reconstruction of a 3 D model from 2D cross-section.To solve the problems of reducing pattern variability in the 2 D training image and increasing sampling uncertainty,an adaptive spatial sampling method is introduced,and an iterative simulation strategy is adopted,in which sample points from the region with higher reliability of the previous simulation results are extracted to be additional condition points in the following simulation to improve the pattern probability sampling stability.The comparison of lateral accretion layer conceptual models shows that the reconstructing algorithm using self-adaptive spatial sampling can improve the accuracy of pattern sampling and rationality of spatial structure characteristics,and accurately reflect the morphology and distribution pattern of the lateral accretion layer.Application of the method in reconstructing the meandering river reservoir of the Cretaceous McMurray Formation in Canada shows that the new method can accurately reproduce the shape,spatial distribution pattern and development features of complex lateral accretion layers in the meandering river reservoir under tide effect.The test by sparse wells shows that the simulation accuracy is above 85%,and the coincidence rate of interpretation and prediction results of newly drilled horizontal wells is up to 80%.展开更多
We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of...We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of ablation morphology and lattice temperature.For investigating the effect of sample temperature on femtosecond laser processing,we conduct experiments on and simulate the thermal behavior of femtosecond laser irradiating copper by using a two-temperature model.The simulation results show that both electron peak temperature and the relaxation time needed to reach equilibrium increase as initial sample temperature rises.When the sample temperature rises from 300 K to 600 K,the maximum lattice temperature of the copper surface increases by about 6500 K under femtosecond laser irradiation,and the ablation depth increases by 20%.The simulated ablation depths follow the same general trend as the experimental values.This work provides some theoretical basis and technical support for developing femtosecond laser processing in the field of metal materials.展开更多
Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction...Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction technology, a double-layer-plasma-based metasurface—composed of a checkerboard metasurface, a double-layer plasma and an air gap between them—was investigated. Based on the principle of backscattering cancellation, we designed a checkerboard metasurface composed of different artificial magnetic conductor units;the checkerboard metasurface can reflect vertically incident electromagnetic(EM) waves in four different inclined directions to reduce the RCS. Full-wave simulations confirm that the doublelayer-plasma-based metasurface can improve the RCS reduction effect of the metasurface and the plasma. This is because in a band lower than the working band of the metasurface, the RCS reduction effect is mainly improved by the plasma layer. In the working band of the metasurface,impedance mismatching between the air gap and first plasma layer and between first and second plasma layers cause the scattered waves to become more dispersed, so the propagation path of the EM waves in the plasma becomes longer, increasing the absorption of the EM waves by the plasma. Thus, the RCS reduction effect is enhanced. The double-layer-plasma-based metasurface can be insensitive to the polarization of the incoming EM waves, and can also maintain a satisfactory RCS reduction band when the incident waves are oblique.展开更多
Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspect...Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets.展开更多
Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and cou...Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and coupling of these structural and compositional parameters.In this research,we demon-strate an effective approach to optimize PSCs performance via machine learning(ML).To address chal-lenges posed by limited samples,we propose a feature mask(FM)method,which augments training samples through feature transformation rather than synthetic data.Using this approach,squeeze-and-excitation residual network(SEResNet)model achieves an accuracy with a root-mean-square-error(RMSE)of 0.833%and a Pearson's correlation coefficient(r)of 0.980.Furthermore,we employ the permu-tation importance(PI)algorithm to investigate key features for PCE.Subsequently,we predict PCE through high-throughput screenings,in which we study the relationship between PCE and chemical com-positions.After that,we conduct experiments to validate the consistency between predicted results by ML and experimental results.In this work,ML demonstrates the capability to predict device performance,extract key parameters from complex systems,and accelerate the transition from laboratory findings to commercialapplications.展开更多
Background: Prenatal diagnosis is the process of evaluating the presence of disease or potential disease in the fetus, this enables families to be better prepared before the birth of the baby. There are non-invasive p...Background: Prenatal diagnosis is the process of evaluating the presence of disease or potential disease in the fetus, this enables families to be better prepared before the birth of the baby. There are non-invasive prenatal diagnosis procedures and invasive prenatal diagnosis procedures. The invasive prenatal diagnosis procedures are CVS (chorionic villus sampling) and amniocentesis. The American College of Obstetricians and Gynecologists states that invasive diagnostic testing should be available to all women, regardless of age or risk. Objective: To determine the indications, outcome and results of diagnostic invasive prenatal procedures. Study setting: The obstetrics and Gynecology Department in Salmaniya Medical Complex in Kingdom of Bahrain. Study design: Retrospective descriptive study. Study subjects and Methods: This retrospective descriptive study was conducted on 175 pregnant women who underwent invasive prenatal procedures (CVS and amniocentesis) between January 2013 and December 2018 at SMC in Kingdom of Bahrain. All medical records of the participants were reviewed and entered the study. According to the implemented procedures, medical records were categorized into two chorionic villus sampling (CVS) and amniocentesis groups. The study subject will include indications of the procedures which are advanced maternal age, hematological disorders, genetic disorders, metabolic disorders, abnormal structural findings in fetal ultrasound and previous child with aneuploidy. In addition, the study will address the complications, outcome and results of procedures. Results: About half of our indications of the procedures were due to hematological disorders (47.6%) followed by abnormal structural findings in fetal ultrasound (30.1%) then genetic disorders (15.7%), metabolic disorders (4.8%) and advanced maternal age (1.8%). Regarding complications of the procedure;threatened miscarriage or loss of pregnancy within 3 weeks was (2.3%), amniotic fluid leakage (0.7%), abdominal cramps (0.7%) and Insufficient or contaminated sample (6.2%). Regarding outcome of the pregnancy, our results showed that the loss of pregnancy was (4.8%), intrauterine fetal death or still birth was (13.9%), live birth was (63.9%), preterm delivery was (7.8%), preterm premature rupture of membrane (PPROM) was (1.8%), limbs reduction was (0.0%). Termination of pregnancy outside the country was (7.8%) of chorionic villus sampling and amniocentesis. Conclusion: CVS and amniocentesis are useful outpatient procedures to detect diagnosis or to assess whether a patient is at increased risk of having an affected fetus and that will minimize the psychological impact on the patient and to provide a proper antenatal care to the pregnant women by her obstetrician and follow up to the baby by pediatrician. In this study it was observed that most of the patients who underwent the procedure were couples either carrier or affected to sickle cell disease or Beta thalassemia.展开更多
Dyslipidemia is a disorder where abnormally lipid concentrations circulate in the bloodstream. The disorder is common in type 2 diabetics (T2D) and is linked with T2D comorbidities, particularly cardiovascular disease...Dyslipidemia is a disorder where abnormally lipid concentrations circulate in the bloodstream. The disorder is common in type 2 diabetics (T2D) and is linked with T2D comorbidities, particularly cardiovascular disease. Dyslipidemia in T2D is typically characterized by elevated plasma triglyceride and low high-density lipoprotein cholesterol (HDL-C) levels. There is a significant gap in the literature regarding dyslipidemia in rural parts of Africa, where lipid profiles may not be captured through routine surveillance. This study aimed to characterize the prevalence and demo-graphic profile of dyslipidemia in T2D in the rural community of Ganadougou, Mali. We performed a cross-sectional study of 104 subjects with T2D in Ganadougou between November 2021 and March 2022. Demographic and lipid profiles were collected through cross-sectional surveys and serological analyses. The overall prevalence of dyslipidemia in T2D patients was 87.5% (91/104), which did not differ by sex (P = .368). High low-density lipoprotein cholesterol (LDL-C) was the most common lipid abnormality (78.9%, [82/104]). Dyslipidemia was associated with age and hypertension status (P = .013 and.036, respectively). High total and high LDL-C parameters were significantly associated with hypertension (P = .029 and .006, respectively). In low-resource settings such as rural Mali, there is a critical need to improve infrastructure for routine dyslipidemia screening to guide its prevention and intervention approaches. The high rates of dyslipidemia observed in Gandadougou, consistent with concomitant increases in cardiovascular diseases in Africa suggest that lipid profile assessments should be incorporated into routine medical care for T2D patients in African rural settings.展开更多
3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational acc...3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.展开更多
Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersp...Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset.展开更多
In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training s...In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52001088,52271269,U1906233)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2021E050)+2 种基金the State Key Laboratory of Ocean Engineering(Grant No.GKZD010084)Liaoning Province’s Xing Liao Talents Program(Grant No.XLYC2002108)Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents(Grant No.2021RD16)。
文摘Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.
基金Supported by Suzhou Municipal Science and Technology Program of China,No.SKJY2021012.
文摘BACKGROUND Colorectal polyps(CPs)are frequently occurring abnormal growths in the colorectum,and are a primary precursor of colorectal cancer(CRC).The triglyceride-glucose(TyG)index is a novel marker that assesses metabolic health and insulin resistance,and has been linked to gastrointestinal cancers.AIM To investigate the potential association between the TyG index and CPs,as the relation between them has not been documented.METHODS A total of 2537 persons undergoing a routine health physical examination and colonoscopy at The First People's Hospital of Kunshan,Jiangsu Province,China,between January 2020 and December 2022 were included in this retrospective cross-sectional study.After excluding individuals who did not meet the eligibility criteria,descriptive statistics were used to compare characteristics between patients with and without CPs.Logistic regression analyses were conducted to determine the associations between the TyG index and the prevalence of CPs.The TyG index was calculated using the following formula:Ln[triglyceride(mg/dL)×glucose(mg/dL)/2].The presence and types of CPs was determined based on data from colonoscopy reports and pathology reports.RESULTS A nonlinear relation between the TyG index and the prevalence of CPs was identified,and exhibited a curvilinear pattern with a cut-off point of 2.31.A significant association was observed before the turning point,with an odds ratio(95% confidence interval)of 1.70(1.40,2.06),P<0.0001.However,the association between the TyG index and CPs was not significant after the cut-off point,with an odds ratio(95% confidence interval)of 0.57(0.27,1.23),P=0.1521.CONCLUSION Our study revealed a curvilinear association between the TyG index and CPs in Chinese individuals,suggesting its potential utility in developing colonoscopy screening strategies for preventing CRC.
文摘BACKGROUND Healthcare workers(HCWs)are at increased risk of contracting coronavirus disease 2019(COVID-19)as well as worsening mental health problems and insomnia.These problems can persist for a long period,even after the pandemic.However,less is known about this topic.AIM To analyze mental health,insomnia problems,and their influencing factors in HCWs after the COVID-19 pandemic.METHODS This multicenter cross-sectional,hospital-based study was conducted from June 1,2023 to June 30,2023,which was a half-year after the end of the COVID-19 emergency.Region-stratified population-based cluster sampling was applied at the provincial level for Chinese HCWs.Symptoms such as anxiety,depression,and insomnia were evaluated by the Generalized Anxiety Disorder-7,Patient Health Questionnaire-9,and Insomnia Severity Index.Factors influencing the symptoms were identified by multivariable logistic regression.RESULTS A total of 2000 participants were invited,for a response rate of 70.6%.A total of 1412 HCWs[618(43.8%)doctors,583(41.3%)nurses and 211(14.9%)nonfrontline],254(18.0%),231(16.4%),and 289(20.5%)had symptoms of anxiety,depression,and insomnia,respectively;severe symptoms were found in 58(4.1%),49(3.5%),and 111(7.9%)of the participants.Nurses,female sex,and hospitalization for COVID-19 were risk factors for anxiety,depression,and insomnia symptoms;moreover,death from family or friends was a risk factor for insomnia symptoms.During the COVID-19 outbreak,most[1086(76.9%)]of the participating HCWs received psychological interventions,while nearly all[994(70.4%)]of them had received public psychological education.Only 102(7.2%)of the HCWs received individual counseling from COVID-19.CONCLUSION Although the mental health and sleep problems of HCWs were relieved after the COVID-19 pandemic,they still faced challenges and greater risks than did the general population.Identifying risk factors would help in providing targeted interventions.In addition,although a major proportion of HCWs have received public psychological education,individual interventions are still insufficient.
文摘How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.
文摘The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys.
基金This paper was supported by the National Natural Science Foundation of China(Grant No.61972261)the Natural Science Foundation of Guangdong Province(No.2023A1515011667)+1 种基金the Key Basic Research Foundation of Shenzhen(No.JCYJ20220818100205012)the Basic Research Foundation of Shenzhen(No.JCYJ20210324093609026)。
文摘Random sample partition(RSP)is a newly developed big data representation and management model to deal with big data approximate computation problems.Academic research and practical applications have confirmed that RSP is an efficient solution for big data processing and analysis.However,a challenge for implementing RSP is determining an appropriate sample size for RSP data blocks.While a large sample size increases the burden of big data computation,a small size will lead to insufficient distribution information for RSP data blocks.To address this problem,this paper presents a novel density estimation-based method(DEM)to determine the optimal sample size for RSP data blocks.First,a theoretical sample size is calculated based on the multivariate Dvoretzky-Kiefer-Wolfowitz(DKW)inequality by using the fixed-point iteration(FPI)method.Second,a practical sample size is determined by minimizing the validation error of a kernel density estimator(KDE)constructed on RSP data blocks for an increasing sample size.Finally,a series of persuasive experiments are conducted to validate the feasibility,rationality,and effectiveness of DEM.Experimental results show that(1)the iteration function of the FPI method is convergent for calculating the theoretical sample size from the multivariate DKW inequality;(2)the KDE constructed on RSP data blocks with sample size determined by DEM can yield a good approximation of the probability density function(p.d.f);and(3)DEM provides more accurate sample sizes than the existing sample size determination methods from the perspective of p.d.f.estimation.This demonstrates that DEM is a viable approach to deal with the sample size determination problem for big data RSP implementation.
基金Supported by Research Foundation of CLEP of China (Grant No.TY3Q20110003)。
文摘The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future.
基金funded by the Science and Technology Project of the Xinjiang Production and Construction Corps(NO.2021AB030)the Innovative Development Project of Shihezi University(NO.CXFZ202005)the Non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences(2020-PT330-003).
文摘Objective This study aimed to explore the relationships between residential greenness and cardiometabolic risk factors among rural adults in Xinjiang Uygur Autonomous Region(Xinjiang)and thus provide a theoretical basis and data support for improving the health of residents in this region.Methods We recruited 9,723 adult rural residents from the 51st Regiment of the Third Division of the Xinjiang Production and Construction Corps in September 2016.The normalized difference vegetation index(NDVI)was used to estimate residential greenness.The generalized linear mixed model(GLMM)was used to examine the association between residential greenness and cardiometabolic risk factors.Results Higher residential greenness was associated with lower cardiometabolic risk factor prevalence.After adjustments were made for age,sex,education,and marital status,for each interquartile range(IQR)increase of NDVI500-m,the risk of hypertension was reduced by 10.3%(OR=0.897,95%CI=0.836-0.962),the risk of obesity by 20.5%(OR=0.795,95%CI=0.695-0.910),the risk of type 2 diabetes by 15.1%(OR=0.849,95%CI=0.740-0.974),and the risk of dyslipidemia by 10.5%(OR=0.895,95%CI=0.825-0.971).Risk factor aggregation was reduced by 20.4%(OR=0.796,95%CI=0.716-0.885)for the same.Stratified analysis showed that NDVI500-m was associated more strongly with hypertension,dyslipidemia,and risk factor aggregation among male participants.The association of NDVI500-m with type 2 diabetes was stronger among participants with a higher education level.PM10 and physical activity mediated 1.9%-9.2%of the associations between NDVI500-m and obesity,dyslipidemia,and risk factor aggregation.Conclusion Higher residential greenness has a protective effect against cardiometabolic risk factors among rural residents in Xinjiang.Increasing the area of green space around residences is an effective measure to reduce the burden of cardiometabolic-related diseases among rural residents in Xinjiang.
基金supported by the Postdoctoral Fellowship Program(Grant No.:(IO)R016320001)by Mahidol University,Thailand.supported by Mahidol University,Thailand(to Associate Professor Sakda Khoomrung)funding support from the National Science,Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation,Thailand(Grant No.:B36G660007).
文摘The collision cross-sections(CCS)measurement using ion mobility spectrometry(IMS)in combination with mass spectrometry(MS)offers a great opportunity to increase confidence in metabolite identification.However,owing to the lack of sensitivity and resolution,IMS has an analytical challenge in studying the CCS values of very low-molecular-weight metabolites(VLMs250 Da).Here,we describe an analytical method using ultrahigh-performance liquid chromatography(UPLC)coupled to a traveling wave ion mobility-quadrupole-time-of-flight mass spectrometer optimized for the measurement of VLMs in human urine samples.The experimental CCS values,along with mass spectral properties,were reported for the 174 metabolites.The experimental data included the mass-to-charge ratio(m/z),retention time(RT),tandem MS(MS/MS)spectra,and CCS values.Among the studied metabolites,263 traveling wave ion mobility spectrometry(TWIMS)-derived CCS values(TWCCSN2)were reported for the first time,and more than 70%of these were CCS values of VLMs.The TWCCSN2 values were highly repeatable,with inter-day variations of<1%relative standard deviation(RSD).The developed method revealed excellent TWCCSN2 accuracy with a CCS difference(DCCS)within±2%of the reported drift tube IMS(DTIMS)and TWIMS CCS values.The complexity of the urine matrix did not affect the precision of the method,as evidenced by DCCS within±1.92%.According to the Metabolomics Standards Initiative,55 urinary metabolites were identified with a confidence level of 1.Among these 55 metabolites,53(96%)were VLMs.The larger number of confirmed compounds found in this study was a result of the addition of TWCCSN2 values,which clearly increased metabolite identification confidence.
基金funded by the grants from the National Key Research and Development Program of China[2021YFC2301503,2022YFC2302900]the National Natural and Science Foundation of China[82171739,82171815,81873884]。
文摘Objective To evaluate the diagnostic value of histopathological examination of ultrasound-guided puncture biopsy samples in extrapulmonary tuberculosis(EPTB).Methods This study was conducted at the Shanghai Public Health Clinical Center.A total of 115patients underwent ultrasound-guided puncture biopsy,followed by MGIT 960 culture(culture),smear,Gene Xpert MTB/RIF(Xpert),and histopathological examination.These assays were performed to evaluate their effectiveness in diagnosing EPTB in comparison to two different diagnostic criteria:liquid culture and composite reference standard(CRS).Results When CRS was used as the reference standard,the sensitivity and specificity of culture,smear,Xpert,and histopathological examination were(44.83%,89.29%),(51.72%,89.29%),(70.11%,96.43%),and(85.06%,82.14%),respectively.Based on liquid culture tests,the sensitivity and specificity of smear,Xpert,and pathological examination were(66.67%,72.60%),(83.33%,63.01%),and(92.86%,45.21%),respectively.Histopathological examination showed the highest sensitivity but lowest specificity.Further,we found that the combination of Xpert and histopathological examination showed a sensitivity of 90.80%and a specificity of 89.29%.Conclusion Ultrasound-guided puncture sampling is safe and effective for the diagnosis of EPTB.Compared with culture,smear,and Xpert,histopathological examination showed higher sensitivity but lower specificity.The combination of histopathology with Xpert showed the best performance characteristics.
基金Supported by the China National Science and Technology Major Project(2017ZX05005-004-002,2016ZX05031-002-001)National Natural Science Foundation of China(41872138)Open Foundation of Top Disciplines in Yangtze University(2019KFJJ0818029)。
文摘An orthogonal 2D training image is constructed from the geological analysis results of well logs and sedimentary facies;the 2 D probabilities in three directions are obtained through linear pooling method and then aggregated by the logarithmic linear pooling to determine the 3 D multi-point pattern probabilities at the unknown points,to realize the reconstruction of a 3 D model from 2D cross-section.To solve the problems of reducing pattern variability in the 2 D training image and increasing sampling uncertainty,an adaptive spatial sampling method is introduced,and an iterative simulation strategy is adopted,in which sample points from the region with higher reliability of the previous simulation results are extracted to be additional condition points in the following simulation to improve the pattern probability sampling stability.The comparison of lateral accretion layer conceptual models shows that the reconstructing algorithm using self-adaptive spatial sampling can improve the accuracy of pattern sampling and rationality of spatial structure characteristics,and accurately reflect the morphology and distribution pattern of the lateral accretion layer.Application of the method in reconstructing the meandering river reservoir of the Cretaceous McMurray Formation in Canada shows that the new method can accurately reproduce the shape,spatial distribution pattern and development features of complex lateral accretion layers in the meandering river reservoir under tide effect.The test by sparse wells shows that the simulation accuracy is above 85%,and the coincidence rate of interpretation and prediction results of newly drilled horizontal wells is up to 80%.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0307701)the National Natural Science Foundation of China(Grant Nos.11674128,11674124,and 11974138).
文摘We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of ablation morphology and lattice temperature.For investigating the effect of sample temperature on femtosecond laser processing,we conduct experiments on and simulate the thermal behavior of femtosecond laser irradiating copper by using a two-temperature model.The simulation results show that both electron peak temperature and the relaxation time needed to reach equilibrium increase as initial sample temperature rises.When the sample temperature rises from 300 K to 600 K,the maximum lattice temperature of the copper surface increases by about 6500 K under femtosecond laser irradiation,and the ablation depth increases by 20%.The simulated ablation depths follow the same general trend as the experimental values.This work provides some theoretical basis and technical support for developing femtosecond laser processing in the field of metal materials.
基金supported in part by the China Postdoctoral Science Foundation (No. 2020M673341)in part by the Natural Science Basic Research Program of Shaanxi (No.2023-JC-YB-549)+1 种基金in part by National Natural Science Foundation of China (Nos. 62371375 and 62371372)Innovation Capability Support Program of Shaanxi (No. 2022TD-37)。
文摘Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction technology, a double-layer-plasma-based metasurface—composed of a checkerboard metasurface, a double-layer plasma and an air gap between them—was investigated. Based on the principle of backscattering cancellation, we designed a checkerboard metasurface composed of different artificial magnetic conductor units;the checkerboard metasurface can reflect vertically incident electromagnetic(EM) waves in four different inclined directions to reduce the RCS. Full-wave simulations confirm that the doublelayer-plasma-based metasurface can improve the RCS reduction effect of the metasurface and the plasma. This is because in a band lower than the working band of the metasurface, the RCS reduction effect is mainly improved by the plasma layer. In the working band of the metasurface,impedance mismatching between the air gap and first plasma layer and between first and second plasma layers cause the scattered waves to become more dispersed, so the propagation path of the EM waves in the plasma becomes longer, increasing the absorption of the EM waves by the plasma. Thus, the RCS reduction effect is enhanced. The double-layer-plasma-based metasurface can be insensitive to the polarization of the incoming EM waves, and can also maintain a satisfactory RCS reduction band when the incident waves are oblique.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.51975347 and 51907117)in part by the Shanghai Science and Technology Program (Grant No.22010501600).
文摘Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets.
基金supported by the National Key Research and Development Program (2022YFF0609504)the National Natural Science Foundation of China (61974126,51902273,62005230,62001405)the Natural Science Foundation of Fujian Province of China (No.2021J06009)
文摘Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and coupling of these structural and compositional parameters.In this research,we demon-strate an effective approach to optimize PSCs performance via machine learning(ML).To address chal-lenges posed by limited samples,we propose a feature mask(FM)method,which augments training samples through feature transformation rather than synthetic data.Using this approach,squeeze-and-excitation residual network(SEResNet)model achieves an accuracy with a root-mean-square-error(RMSE)of 0.833%and a Pearson's correlation coefficient(r)of 0.980.Furthermore,we employ the permu-tation importance(PI)algorithm to investigate key features for PCE.Subsequently,we predict PCE through high-throughput screenings,in which we study the relationship between PCE and chemical com-positions.After that,we conduct experiments to validate the consistency between predicted results by ML and experimental results.In this work,ML demonstrates the capability to predict device performance,extract key parameters from complex systems,and accelerate the transition from laboratory findings to commercialapplications.
文摘Background: Prenatal diagnosis is the process of evaluating the presence of disease or potential disease in the fetus, this enables families to be better prepared before the birth of the baby. There are non-invasive prenatal diagnosis procedures and invasive prenatal diagnosis procedures. The invasive prenatal diagnosis procedures are CVS (chorionic villus sampling) and amniocentesis. The American College of Obstetricians and Gynecologists states that invasive diagnostic testing should be available to all women, regardless of age or risk. Objective: To determine the indications, outcome and results of diagnostic invasive prenatal procedures. Study setting: The obstetrics and Gynecology Department in Salmaniya Medical Complex in Kingdom of Bahrain. Study design: Retrospective descriptive study. Study subjects and Methods: This retrospective descriptive study was conducted on 175 pregnant women who underwent invasive prenatal procedures (CVS and amniocentesis) between January 2013 and December 2018 at SMC in Kingdom of Bahrain. All medical records of the participants were reviewed and entered the study. According to the implemented procedures, medical records were categorized into two chorionic villus sampling (CVS) and amniocentesis groups. The study subject will include indications of the procedures which are advanced maternal age, hematological disorders, genetic disorders, metabolic disorders, abnormal structural findings in fetal ultrasound and previous child with aneuploidy. In addition, the study will address the complications, outcome and results of procedures. Results: About half of our indications of the procedures were due to hematological disorders (47.6%) followed by abnormal structural findings in fetal ultrasound (30.1%) then genetic disorders (15.7%), metabolic disorders (4.8%) and advanced maternal age (1.8%). Regarding complications of the procedure;threatened miscarriage or loss of pregnancy within 3 weeks was (2.3%), amniotic fluid leakage (0.7%), abdominal cramps (0.7%) and Insufficient or contaminated sample (6.2%). Regarding outcome of the pregnancy, our results showed that the loss of pregnancy was (4.8%), intrauterine fetal death or still birth was (13.9%), live birth was (63.9%), preterm delivery was (7.8%), preterm premature rupture of membrane (PPROM) was (1.8%), limbs reduction was (0.0%). Termination of pregnancy outside the country was (7.8%) of chorionic villus sampling and amniocentesis. Conclusion: CVS and amniocentesis are useful outpatient procedures to detect diagnosis or to assess whether a patient is at increased risk of having an affected fetus and that will minimize the psychological impact on the patient and to provide a proper antenatal care to the pregnant women by her obstetrician and follow up to the baby by pediatrician. In this study it was observed that most of the patients who underwent the procedure were couples either carrier or affected to sickle cell disease or Beta thalassemia.
文摘Dyslipidemia is a disorder where abnormally lipid concentrations circulate in the bloodstream. The disorder is common in type 2 diabetics (T2D) and is linked with T2D comorbidities, particularly cardiovascular disease. Dyslipidemia in T2D is typically characterized by elevated plasma triglyceride and low high-density lipoprotein cholesterol (HDL-C) levels. There is a significant gap in the literature regarding dyslipidemia in rural parts of Africa, where lipid profiles may not be captured through routine surveillance. This study aimed to characterize the prevalence and demo-graphic profile of dyslipidemia in T2D in the rural community of Ganadougou, Mali. We performed a cross-sectional study of 104 subjects with T2D in Ganadougou between November 2021 and March 2022. Demographic and lipid profiles were collected through cross-sectional surveys and serological analyses. The overall prevalence of dyslipidemia in T2D patients was 87.5% (91/104), which did not differ by sex (P = .368). High low-density lipoprotein cholesterol (LDL-C) was the most common lipid abnormality (78.9%, [82/104]). Dyslipidemia was associated with age and hypertension status (P = .013 and.036, respectively). High total and high LDL-C parameters were significantly associated with hypertension (P = .029 and .006, respectively). In low-resource settings such as rural Mali, there is a critical need to improve infrastructure for routine dyslipidemia screening to guide its prevention and intervention approaches. The high rates of dyslipidemia observed in Gandadougou, consistent with concomitant increases in cardiovascular diseases in Africa suggest that lipid profile assessments should be incorporated into routine medical care for T2D patients in African rural settings.
基金the National Natural Science Foundation of China(Nos.52005244,U20A20275)the Natural Science Foundation of Hunan Province,China(Nos.2021JJ30573,2023JJ60193)the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China(No.31715011)。
文摘3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.
基金supported partially by NationalNatural Science Foundation of China(NSFC)(No.U21A20146)Collaborative Innovation Project of Anhui Universities(No.GXXT-2020-070)+8 种基金Cooperation Project of Anhui Future Technology Research Institute and Enterprise(No.2023qyhz32)Development of a New Dynamic Life Prediction Technology for Energy Storage Batteries(No.KH10003598)Opening Project of Key Laboratory of Electric Drive and Control of Anhui Province(No.DQKJ202304)Anhui Provincial Department of Education New Era Education Quality Project(No.2023dshwyx019)Special Fund for Collaborative Innovation between Anhui Polytechnic University and Jiujiang District(No.2022cyxtb10)Key Research and Development Program of Wuhu City(No.2022yf42)Open Research Fund of Anhui Key Laboratory of Detection Technology and Energy Saving Devices(No.JCKJ2021B06)Anhui Provincial Graduate Student Innovation and Entrepreneurship Practice Project(No.2022cxcysj123)Key Scientific Research Project for Anhui Universities(No.2022AH050981).
文摘Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset.
基金supported by the National Natural Science Foundation of China(62371049)。
文摘In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results.