3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational acc...3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.展开更多
In a round-oval-round pass rolling sequence, the cross-section profile of an outgoing workpiece was predicted first after getting the maximum spread. The concept "critical point on the contact boundary" was proposed...In a round-oval-round pass rolling sequence, the cross-section profile of an outgoing workpiece was predicted first after getting the maximum spread. The concept "critical point on the contact boundary" was proposed and the coordinates of the critical point were solved. The equivalent contact section area was represented and the mean roll radius was determined. The validity of this model was examined by alloy bar rolling experiment and rigid-plastic FEM simulation. Compared with the existing models, the mean roll radius obtained by this model is similar to experiment data.展开更多
The calibration accuracy of High Resolution Infrared Radiation Sounder Mod. 2 (HIRS / 2) on NOAA-10 satellite is analyzed in this paper. The non-linear effect in the linear calibration curve induces a deviation of 1.5...The calibration accuracy of High Resolution Infrared Radiation Sounder Mod. 2 (HIRS / 2) on NOAA-10 satellite is analyzed in this paper. The non-linear effect in the linear calibration curve induces a deviation of 1.5 degrees (k) of brightness temperature in the tenth channel (8.3 um, water vapor absorption) of the HIRS/2 and the non-linear effect affects the other channels to a different extent. Based on analyzing non- linearity in two-point calibration curve, a tri-point calibration equation is given. A numerical test of effects of the linear and non-linear calibration models on the accuracy of atmospheric temperature retrievals is carried out.展开更多
Deviation exists between measured and simulated microwave radiometer sounding data. The bias results in low-accuracy atmospheric temperature and humidity profiles simulated by Back Propagation artificial neural networ...Deviation exists between measured and simulated microwave radiometer sounding data. The bias results in low-accuracy atmospheric temperature and humidity profiles simulated by Back Propagation artificial neural network models. This paper evaluated a retrieving atmospheric temperature and humidity profiles method by adopting an input data adjustment-based Back Propagation artificial neural networks model. First, the sounding data acquired at a Nanjing meteorological site in June 2014 were inputted into the Mono RTM Radiative transfer model to simulate atmospheric downwelling radiance at the 22 spectral channels from 22.234 GHz to 58.8 GHz, and we performed a comparison and analysis of the real observed data; an adjustment model for the measured microwave radiometer sounding data was built. Second, we simulated the sounding data of the 22 channels using the sounding data acquired at the site from 2011 to 2013. Based on the simulated rightness temperature data and the sounding data, BP neural network-based models were trained for the retrieval of atmospheric temperature, water vapor density and relative humidity profiles. Finally, we applied the adjustment model to the microwave radiometer sounding data collected in July 2014, generating the corrected data. After that, we inputted the corrected data into the BP neural network regression model to predict the atmospheric temperature, vapor density and relative humidity profile at 58 high levels from 0 to 10 km. We evaluated our model's effect by comparing its output with the real measured data and the microwave radiometer's own second-level product. The experiments showed that the inversion model improves atmospheric temperature and humidity profile retrieval accuracy; the atmospheric temperature RMS error is between 1 K and 2.0 K; the water vapor density's RMS error is between 0.2 g/m^3 and 1.93 g/m3; and the relative humidity's RMS error is between 2.5% and 18.6%.展开更多
The key technique of a kinetic energy rod(KER) warhead is to control the flight attitude of rods. The rods are usually designed to different shapes. A new conceptual KER named profiled rod which has large L/D ratio is...The key technique of a kinetic energy rod(KER) warhead is to control the flight attitude of rods. The rods are usually designed to different shapes. A new conceptual KER named profiled rod which has large L/D ratio is described in this paper. The elastic dynamic equations of this profiled rod flying at high velocity after detonation are set up on the basis of Euler-Bernoulli beam, and the aeroelastic deformation of profiled rod is calculated by semi-analytical method for calculating the vibration characteristics of variable cross-section beam. In addition, the aeroelastic deformation of the undeformed profiled rod and the aeroelastic deformation of deformed profiled rod which is caused by the detonation of explosive are simulated by computational fluid dynamic and finite element method(CFD/FEM), respectively. A satisfactory agreement of these two methods is obtained by the comparison of two methods. The results show that the semi-analytical method for calculating the vibration characteristics of variable cross-section beam is applied to analyze the aeroelastic deformation of profiled rod flying at high velocity.展开更多
Horizontal wind measured by wind profiling radar(WPR) is based on uniform wind assumption in volume of lateral beam. However, this assumption cannot completely meet in the real atmosphere. The subject of this work is ...Horizontal wind measured by wind profiling radar(WPR) is based on uniform wind assumption in volume of lateral beam. However, this assumption cannot completely meet in the real atmosphere. The subject of this work is to analyze the influence of atmospheric inhomogeneities for wind measurement. Five-beam WPR can measure two groups of horizontal wind components U and V independently, using the difference of horizontal wind components U and V can evaluate the influence of the inhomogeneity of the atmospheric motion on wind measurement. The influences can be divided into both inhomogeneous distribution of horizontal motion and vertical motion. Based on wind measurements and meteorological background information, a new means of coordinate rotation the two kinds of inhomogeneous factor was separated, and the impact in different weather background was discussed. From analysis of the wind measured by type of PB-II WPR(445MHz) during 2012 at Yanqing of Beijing, it is shown that the inhomogeneity of horizontal motion is nearly the same in U and V direction. Both the inhomogeneities of horizontal motion and vertical motion have influence on wind measurement, and the degrees of both influences are associated with changes of wind speed. In clear air, inhomogeneity of horizontal motion is the main influence on wind measurement because of small vertical velocity.In precipitation, the two influences are larger than that in clear air.展开更多
[目的]文章旨在研究空中风力发电系统(Airborne Wind Energy System,AWES)的测风需求及设备选型。[方法]以某空中风力发电示范工程为依托,开展测风激光雷达与风廓线雷达的对比观测试验,并对数据获取率、垂直廓线特征和时间变化特征进行...[目的]文章旨在研究空中风力发电系统(Airborne Wind Energy System,AWES)的测风需求及设备选型。[方法]以某空中风力发电示范工程为依托,开展测风激光雷达与风廓线雷达的对比观测试验,并对数据获取率、垂直廓线特征和时间变化特征进行分析。[结果]结果显示:在3 km高度范围内,测风激光雷达的数据获取率随高度递减至不足0.4,风廓线雷达的数据获取率则维持在0.98以上,具有更好的观测适应性;两种测风设备的风速、风向垂直廓线以及逐日、多日波动特征均具有一致性,并且能被再分析资料和高空气象站同期探空资料所验证。测风激光雷达观测结果的中位数、极差、标准差等统计特征与再分析资料更接近,相关性更好;风廓线雷达观测结果的极差和标准差整体偏大,测风精度不及测风激光雷达。[结论]文章研究表明,应根据项目所在地的气候状况,在空中风力发电站工程的不同设计阶段合理选择测风设备,科学设置测风方式。展开更多
The cooling curves of 6061 aluminum alloy were acquired through water quenching experiment. The heat transfer coefficient was accurately calculated based on the cooling curves and the law of cooling. The online quench...The cooling curves of 6061 aluminum alloy were acquired through water quenching experiment. The heat transfer coefficient was accurately calculated based on the cooling curves and the law of cooling. The online quenching process of complex cross-section profile was dynamically simulated by the ABAQUS software. The results suggest that the heat transfer coefficient changes during online quenching process. Different parts of the profile have different cooling velocity, and it was verified by water quenching experiment. The maximum residual stress of the profile was predicted using FEM simulation based on ABAQUS software The relations between the temperature and stress were presented by analyzing the data of key points.展开更多
基金the National Natural Science Foundation of China(Nos.52005244,U20A20275)the Natural Science Foundation of Hunan Province,China(Nos.2021JJ30573,2023JJ60193)the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China(No.31715011)。
文摘3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.
文摘In a round-oval-round pass rolling sequence, the cross-section profile of an outgoing workpiece was predicted first after getting the maximum spread. The concept "critical point on the contact boundary" was proposed and the coordinates of the critical point were solved. The equivalent contact section area was represented and the mean roll radius was determined. The validity of this model was examined by alloy bar rolling experiment and rigid-plastic FEM simulation. Compared with the existing models, the mean roll radius obtained by this model is similar to experiment data.
文摘The calibration accuracy of High Resolution Infrared Radiation Sounder Mod. 2 (HIRS / 2) on NOAA-10 satellite is analyzed in this paper. The non-linear effect in the linear calibration curve induces a deviation of 1.5 degrees (k) of brightness temperature in the tenth channel (8.3 um, water vapor absorption) of the HIRS/2 and the non-linear effect affects the other channels to a different extent. Based on analyzing non- linearity in two-point calibration curve, a tri-point calibration equation is given. A numerical test of effects of the linear and non-linear calibration models on the accuracy of atmospheric temperature retrievals is carried out.
基金National Key Research and Development Program of China(2017YFC1501704,2016YFA0600703)Projects of International Cooperation and Exchanges NSFC(NSFC-RCUK_STFC)(61661136005)+2 种基金Major State Basic Research Development Program of China(973 Program)(2013CB430101)Six Talent Peaks Project in Jiangsu Province(2015-JY-013)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites,National Satellite Meteorological Center,China Meteorological Administration
文摘Deviation exists between measured and simulated microwave radiometer sounding data. The bias results in low-accuracy atmospheric temperature and humidity profiles simulated by Back Propagation artificial neural network models. This paper evaluated a retrieving atmospheric temperature and humidity profiles method by adopting an input data adjustment-based Back Propagation artificial neural networks model. First, the sounding data acquired at a Nanjing meteorological site in June 2014 were inputted into the Mono RTM Radiative transfer model to simulate atmospheric downwelling radiance at the 22 spectral channels from 22.234 GHz to 58.8 GHz, and we performed a comparison and analysis of the real observed data; an adjustment model for the measured microwave radiometer sounding data was built. Second, we simulated the sounding data of the 22 channels using the sounding data acquired at the site from 2011 to 2013. Based on the simulated rightness temperature data and the sounding data, BP neural network-based models were trained for the retrieval of atmospheric temperature, water vapor density and relative humidity profiles. Finally, we applied the adjustment model to the microwave radiometer sounding data collected in July 2014, generating the corrected data. After that, we inputted the corrected data into the BP neural network regression model to predict the atmospheric temperature, vapor density and relative humidity profile at 58 high levels from 0 to 10 km. We evaluated our model's effect by comparing its output with the real measured data and the microwave radiometer's own second-level product. The experiments showed that the inversion model improves atmospheric temperature and humidity profile retrieval accuracy; the atmospheric temperature RMS error is between 1 K and 2.0 K; the water vapor density's RMS error is between 0.2 g/m^3 and 1.93 g/m3; and the relative humidity's RMS error is between 2.5% and 18.6%.
文摘The key technique of a kinetic energy rod(KER) warhead is to control the flight attitude of rods. The rods are usually designed to different shapes. A new conceptual KER named profiled rod which has large L/D ratio is described in this paper. The elastic dynamic equations of this profiled rod flying at high velocity after detonation are set up on the basis of Euler-Bernoulli beam, and the aeroelastic deformation of profiled rod is calculated by semi-analytical method for calculating the vibration characteristics of variable cross-section beam. In addition, the aeroelastic deformation of the undeformed profiled rod and the aeroelastic deformation of deformed profiled rod which is caused by the detonation of explosive are simulated by computational fluid dynamic and finite element method(CFD/FEM), respectively. A satisfactory agreement of these two methods is obtained by the comparison of two methods. The results show that the semi-analytical method for calculating the vibration characteristics of variable cross-section beam is applied to analyze the aeroelastic deformation of profiled rod flying at high velocity.
基金National Natural Science Foundation of China(41475029)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306004)Meteorological Key Technology Integration and Application of the China Meteorological Administration(CMAGJ2013M74)
文摘Horizontal wind measured by wind profiling radar(WPR) is based on uniform wind assumption in volume of lateral beam. However, this assumption cannot completely meet in the real atmosphere. The subject of this work is to analyze the influence of atmospheric inhomogeneities for wind measurement. Five-beam WPR can measure two groups of horizontal wind components U and V independently, using the difference of horizontal wind components U and V can evaluate the influence of the inhomogeneity of the atmospheric motion on wind measurement. The influences can be divided into both inhomogeneous distribution of horizontal motion and vertical motion. Based on wind measurements and meteorological background information, a new means of coordinate rotation the two kinds of inhomogeneous factor was separated, and the impact in different weather background was discussed. From analysis of the wind measured by type of PB-II WPR(445MHz) during 2012 at Yanqing of Beijing, it is shown that the inhomogeneity of horizontal motion is nearly the same in U and V direction. Both the inhomogeneities of horizontal motion and vertical motion have influence on wind measurement, and the degrees of both influences are associated with changes of wind speed. In clear air, inhomogeneity of horizontal motion is the main influence on wind measurement because of small vertical velocity.In precipitation, the two influences are larger than that in clear air.
文摘[目的]文章旨在研究空中风力发电系统(Airborne Wind Energy System,AWES)的测风需求及设备选型。[方法]以某空中风力发电示范工程为依托,开展测风激光雷达与风廓线雷达的对比观测试验,并对数据获取率、垂直廓线特征和时间变化特征进行分析。[结果]结果显示:在3 km高度范围内,测风激光雷达的数据获取率随高度递减至不足0.4,风廓线雷达的数据获取率则维持在0.98以上,具有更好的观测适应性;两种测风设备的风速、风向垂直廓线以及逐日、多日波动特征均具有一致性,并且能被再分析资料和高空气象站同期探空资料所验证。测风激光雷达观测结果的中位数、极差、标准差等统计特征与再分析资料更接近,相关性更好;风廓线雷达观测结果的极差和标准差整体偏大,测风精度不及测风激光雷达。[结论]文章研究表明,应根据项目所在地的气候状况,在空中风力发电站工程的不同设计阶段合理选择测风设备,科学设置测风方式。
基金Project(zzyjkt2013-10B)supported by the Foundation of State Key Laboratory of High-performance&Complicated Manufacturing,ChinaProject(51275533)supported by the National Natural Science Foundation of China
文摘The cooling curves of 6061 aluminum alloy were acquired through water quenching experiment. The heat transfer coefficient was accurately calculated based on the cooling curves and the law of cooling. The online quenching process of complex cross-section profile was dynamically simulated by the ABAQUS software. The results suggest that the heat transfer coefficient changes during online quenching process. Different parts of the profile have different cooling velocity, and it was verified by water quenching experiment. The maximum residual stress of the profile was predicted using FEM simulation based on ABAQUS software The relations between the temperature and stress were presented by analyzing the data of key points.