A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Compar...A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.展开更多
A flexible hingeless control surface model was proposed for motion control of Underwater Vehicles (UVs),which is inspiredby the flexible bending control surfaces of underwater creatures,such as fish and squid.Computat...A flexible hingeless control surface model was proposed for motion control of Underwater Vehicles (UVs),which is inspiredby the flexible bending control surfaces of underwater creatures,such as fish and squid.Computational Fluid Dynamics(CFD) simulation demonstrates that,in comparison with the hinged or rigid control surface,the proposed flexible bendingcontrol surface can suppress the flow separation so as to improve the turning performance.A prototype of the flexible controlsurface was fabricated,in which Shape Memory Alloy (SMA) wires were selected as the actuators.The elastic energy storageand exchange mechanism was incorporated into the actuation of the control surface to improve the efficiency.Thermal analysisof SMA wires was performed to find proper actuating condition.Open-loop bending experiments were carried out.The resultsshow that the proposed control surface can achieve the maximum bending angle of 104°.Moreover,the power and energyconsumption under different pulse conditions were compared.展开更多
A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H^infinity disturbance attenuation design and recurrent neural network adaptive control technique int...A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H^infinity disturbance attenuation design and recurrent neural network adaptive control technique into the dy- namic surface control framework. Two recurrent neural networks are used to adaptively learn the uncertain functions in a flexible joint robot. Then, the effects of approximation error and filter error on the tracking performance are attenuated to a prescribed level by the embedded H-infinity controller, so that the desired H-infinity tracking performance can be achieved. Finally. simulation results verifv the effectiveness of the nronosed control scheme.展开更多
基金Project(2006AA04Z228) supported by the National High-Tech Research and Development Program of ChinaProject(PCSIRT) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.
基金supported by the Self-Planned Task (No.SKLRS200805C) of State Key Laboratory of Robotics and System (HIT)the National Natural Science Foundation of China (Grant No.50775049)
文摘A flexible hingeless control surface model was proposed for motion control of Underwater Vehicles (UVs),which is inspiredby the flexible bending control surfaces of underwater creatures,such as fish and squid.Computational Fluid Dynamics(CFD) simulation demonstrates that,in comparison with the hinged or rigid control surface,the proposed flexible bendingcontrol surface can suppress the flow separation so as to improve the turning performance.A prototype of the flexible controlsurface was fabricated,in which Shape Memory Alloy (SMA) wires were selected as the actuators.The elastic energy storageand exchange mechanism was incorporated into the actuation of the control surface to improve the efficiency.Thermal analysisof SMA wires was performed to find proper actuating condition.Open-loop bending experiments were carried out.The resultsshow that the proposed control surface can achieve the maximum bending angle of 104°.Moreover,the power and energyconsumption under different pulse conditions were compared.
基金supported by the National Natural Science Foundation of China(Nos.60835004,61175075)the Hunan Provincial Innovation Foundation for Postgraduate(No.CX2012B147)
文摘A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H^infinity disturbance attenuation design and recurrent neural network adaptive control technique into the dy- namic surface control framework. Two recurrent neural networks are used to adaptively learn the uncertain functions in a flexible joint robot. Then, the effects of approximation error and filter error on the tracking performance are attenuated to a prescribed level by the embedded H-infinity controller, so that the desired H-infinity tracking performance can be achieved. Finally. simulation results verifv the effectiveness of the nronosed control scheme.