期刊文献+
共找到1,996篇文章
< 1 2 100 >
每页显示 20 50 100
Study on the Sediment Transport Flux and Mechanism in the Bohai Strait at the Tidal and Monthly Scales in Summer 被引量:1
1
作者 YUAN Xiaodong FENG Xiuli +2 位作者 HU Rijun JIANG Shenghui ZHONG Wei 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期75-87,共13页
Based on the data of tidal currents and suspended sediment concentrations observed synchronously at 11 stations in the Bohai Strait lasting for 25 hours,the temporal and spatial variations of currents and suspended se... Based on the data of tidal currents and suspended sediment concentrations observed synchronously at 11 stations in the Bohai Strait lasting for 25 hours,the temporal and spatial variations of currents and suspended sediment concentrations in the Bohai Strait in summer were analyzed.The Study preliminarily discussed the transport mechanism,transport trend and transport flux of suspended sediments in summer,using flux-mechanism decomposition method and numerical simulation.The suspended sediment transport was mainly controlled by advection and next influenced by vertical net circulation,while resuspension is relatively weak in Bohai Strait.The single-width fluxes of investigation stations varied from 3.8 to 89.1 gm^(−1) s^(−1),with the maximum value in Miaodao Strait.The suspended sediment transport trends in Laotieshan channel along the vertical section are obviously distinct.The waters mainly flow out of the Bohai Sea in surface layer,while into the Bohai Sea in bottom layer.However,the transport trends of other channels in the centre and south are consistent vertically.The sediments in the Bohai Strait follows the transport pattern of moving outward from the south and inward from the north in summer,i.e.,the sediments are carried out of the Bohai Sea through the Laotieshan channel,while into the Bohai Sea through other channels.And the outflow flux exceeds the inflow flux in August with the net water flux of 1.4×10^(10)m^(3),basically same as the deliveries of the rivers into the Bohai Sea.Moreover,the suspended sediment flux is 0.33 Mt under the action of tidal residual currents in the Yellow Sea in August. 展开更多
关键词 Bohai Strait suspended sediment transport numerical simulation SUMMER
下载PDF
A new formula of recovery factor for non-equilibrium transport of graded suspended sediment in the Middle Yangtze River 被引量:1
2
作者 LI Lin-lin XIA Jun-qiang +2 位作者 ZHOU Mei-rong DENG Shan-shan LI Zhi-wei 《Journal of Mountain Science》 SCIE CSCD 2023年第1期87-100,共14页
Suspended sediment concentrations in the Middle Yangtze River(MYR)reduced greatly after the Three Gorges Project operation,causing the composition of bed material to coarsen continuously.However,little is known about ... Suspended sediment concentrations in the Middle Yangtze River(MYR)reduced greatly after the Three Gorges Project operation,causing the composition of bed material to coarsen continuously.However,little is known about the non-equilibrium transport of graded suspended sediment owing to different bed material compositions(BMCs)along the MYR,and it is necessary to determine the magnitude of recovery factor.Using the Markov stochastic process in conjunction with the hiding-exposure effect of non-uniform bed-material,a new formula is proposed for calculating the recovery factor including the effect of different BMCs,and it is incorporated into the non-equilibrium transport equation to simulate the recovery processes of suspended load in both sand-gravel bed and sand bed reaches of the MYR.The results show that:(i)the recovery rate of graded sediment concentrations at Zhicheng was slower than that at Shashi during the period 2003-2007;(ii)the mean recovery factors of the coarse,medium,and fine sediment fractions in the ZhichengShashi reach were 0.152,0.0012,and 0.0005,respectively,and the coarse sediment recovered up to the maximum sediment concentration of 0.138 kg/m3over a distance of 15 km;and(iii)the results of the new formula that can consider the effect of bed material composition are in general agreement with the field observations,and the spatial and temporal delay effects are inversely related to particle size and BMC.Consequently,the BMC effect on the nonequilibrium sediment transport in different reaches of the MYR needs to be considered for higher simulation accuracy. 展开更多
关键词 non-equilibrium sediment transport bed material composition transition probability recovery factor Middle Yangtze River
下载PDF
A High-Order Conservative Semi-Lagrangian Solver for 3D Free Surface Flows with Sediment Transport on Voronoi Meshes
3
作者 Matteo Bergami Walter Boscheri Giacomo Dimarco 《Communications on Applied Mathematics and Computation》 2023年第2期596-637,共42页
In this paper,we present a conservative semi-Lagrangian scheme designed for the numeri-cal solution of 3D hydrostatic free surface flows involving sediment transport on unstruc-tured Voronoi meshes.A high-order recons... In this paper,we present a conservative semi-Lagrangian scheme designed for the numeri-cal solution of 3D hydrostatic free surface flows involving sediment transport on unstruc-tured Voronoi meshes.A high-order reconstruction procedure is employed for obtaining a piecewise polynomial representation of the velocity field and sediment concentration within each control volume.This is subsequently exploited for the numerical integration of the Lagrangian trajectories needed for the discretization of the nonlinear convective and viscous terms.The presented method is fully conservative by construction,since the transported quantity or the vector field is integrated for each cell over the deformed vol-ume obtained at the foot of the characteristics that arises from all the vertexes defining the computational element.The semi-Lagrangian approach allows the numerical scheme to be unconditionally stable for what concerns the advection part of the governing equations.Furthermore,a semi-implicit discretization permits to relax the time step restriction due to the acoustic impedance,hence yielding a stability condition which depends only on the explicit discretization of the viscous terms.A decoupled approach is then employed for the hydrostatic fluid solver and the transport of suspended sediment,which is assumed to be passive.The accuracy and the robustness of the resulting conservative semi-Lagrangian scheme are assessed through a suite of test cases and compared against the analytical solu-tion whenever is known.The new numerical scheme can reach up to fourth order of accu-racy on general orthogonal meshes composed by Voronoi polygons. 展开更多
关键词 Conservative semi-Lagrangian Free surface flows sediment transport High-order reconstruction Hydrostatic model
下载PDF
Numerical Simulation of Bed Load and Suspended Load Sediment Transport Using Well-Balanced Numerical Schemes
4
作者 J.C.González-Aguirre J.A.González-Vázquez +2 位作者 J.Alavez-Ramírez R.Silva M.E.Vázquez-Cendón 《Communications on Applied Mathematics and Computation》 2023年第2期885-922,共38页
Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equ... Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equations is made up of the energy balance law and the Exner equations.The numerical solution for this complete system is done in a seg-regated manner.First,the hyperbolic part of the system of balance laws is solved using a finite volume scheme.Three ways to compute the numerical flux have been considered,the Q-scheme of van Leer,the HLLCS approximate Riemann solver,and the last one takes into account the presence of non-conservative products in the model.The discretisation of the source terms is carried out according to the numerical flux chosen.In the second stage,the bed conservation equation is solved by using the approximation computed for the system of balance laws.The numerical schemes have been validated making comparisons between the obtained numerical results and the experimental data for some physical experiments.The numerical results show a good agreement with the experimental data. 展开更多
关键词 sediment transport Suspended load Bed load Finite volume method Numerical simulation Well-balanced schemes
下载PDF
Tracing suspended and bed sediments during high and low water periods using geochemical characteristics-Case study:Vazrood watershed,northern Iran
5
作者 KARIMI Nabiyeh GHOLAMI Leila +1 位作者 KAVIAN Ataollah KHALEDI DARVISHAN Abdulvahed 《Journal of Mountain Science》 SCIE CSCD 2024年第2期470-483,共14页
Complete and comprehensive information about sediment dynamic and identification of hotspots of sediment production and transport are necessary for understanding the erosion processes and increasing the efficiency of ... Complete and comprehensive information about sediment dynamic and identification of hotspots of sediment production and transport are necessary for understanding the erosion processes and increasing the efficiency of soil and water conservation practices.Numerous studies used the sediment fingerprint techniques to investigate the contribution of different sources in suspended and bed sediment yield of the watersheds.However,the contribution of various land use/land covers in suspended and bed sediment yield for the great Caspian Sea basin is in an aura of ambiguity and the present study was conducted to gather information about an important part of this area in northern Iran,where rangelands are located upstream of Hyrcanian forests and dense agricultural lands are located downstream.The surface soil of different land use/land covers including forest,rangeland,agriculture and streambank lands were sampled in 30 points.Suspended and bed sediments were sampled in the watershed outlet in two high and low water periods.Geochemical characteristics of soil and sediment samples containing 59 elements were measured using ICP-OES GBC Integra.The reliable and suitable tracers from 59 elements were then selected using Range test,Kruskal-Wallis and Discriminant Function Analysis,respectively,in FingerPro package of R software.The results showed that for suspended sediment,streambank and rangeland had the highest contributions of 86.2%and 47.5%,respectively,in two high and low water periods.For bed sediment,in two high and low water periods,rangeland and streambank had the highest contributions of 73.8%and 84.4%,respectively.Land use change and especially human activities such as agriculture,road construction and development of residential areas along the main river riparian zone has led to a significant increase in suspended and bed sediments. 展开更多
关键词 Caspian Sea basin FingerPro GEOCHEMISTRY sediment transport Tracer combination
下载PDF
Predicting Net Cross-Shore Total Load Transport: A Phase-Averaging, Quasi-Steady Approach Incorporating Undertow Contribution
6
作者 王玉海 《China Ocean Engineering》 SCIE EI CSCD 2016年第5期703-717,共15页
Wave shapes that induce velocity skewness and acceleration asymmetry are usually responsible for onshore sediment transport, whereas undertow and bottom slope effect normally contribute to offshore sediment transport.... Wave shapes that induce velocity skewness and acceleration asymmetry are usually responsible for onshore sediment transport, whereas undertow and bottom slope effect normally contribute to offshore sediment transport. By incorporating these counteracting driving forces in a phase-averaged manner, the theoretically-based quasi-steady formula of Wang (2007) is modified to predict the magnitude and direction of net cross-shore total load transport under the coaction of wave and current. The predictions show an excellent agreement with the measurement data on medium and fine sand collected by Dohmen-Janssen and Hanes (2002) and Schretlen (2012) in a full-scale wave flume at the Coastal Research Centre in Hannover, Germany. The modified formula can predict the net onshore transport of fine sand in sheet flows. In particular, it can predict the net offshore transport of medium sand in rippled beds through enlarged bed roughness, as well as the net offshore transport of fine-to-coarse sand in sheet flows with the aid of a new criterion to judge the occurrence of net offshore transport. 展开更多
关键词 cross-shore net total load transport PHASE-LAG phase-averaged UNDERTOW
下载PDF
Observations of boundary layer parameters and suspended sediment transport over the intertidal flats of northern Jiangsu, China 被引量:17
7
作者 WANGYaping GAOShu KEXiankun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2004年第3期437-448,共12页
A current-turbidity monitoring system (CTMS) was deployed on the intertidal flat at Wanggang, northern Jiangsu during October 16-17, 2000, to measure the tidal current speeds and seawater turbidities at 5 levels above... A current-turbidity monitoring system (CTMS) was deployed on the intertidal flat at Wanggang, northern Jiangsu during October 16-17, 2000, to measure the tidal current speeds and seawater turbidities at 5 levels above the seabed. Based upon the logarithmic-profile equation, the boundary layer parameters, i.e., u, z0 and C60, were obtained for 247 tidal flow velocity profiles. Around 90% of the profiles were logarithmic according to the critical correlation coefficient. Internal consistency analysis shows that these parameters derived by different methods are consistent with each other. In addition, the height of the bedforms observed is close to the seabed roughness lengths calculated from the velocity profiles, indicating that the boundary layer parameters obtained can reveal the conditions at the sediment-water interface on the intertidal flats. Suspended sediment concentrations were obtained from the 5 CTMS turbidity meters using laboratory and in-situ calibrations. The results show that the in-situ calibrated SSCs have a much higher accuracy than the laboratory calibrated ones. Calculation of suspended sediment fluxes on the intertidal flats, with a magnitude of 104 kg/m per spring tidal cycle, indicates that suspended sediment moves towards the northwest, which is reversal to the transport pattern controlled by the southward Northern Jiangsu Coastal Current in the sub-tidal zone and adjacent shallow waters. 展开更多
关键词 boundary layer parameter grain size sediment transport intertidal flat Jiangsu coast
下载PDF
Experimental investigation of the effect of flow turbulence and sediment transport patterns on the adsorption of cadmium ions onto sediment particles 被引量:6
8
作者 HUANG Sui-liang NG Chiu-on GUO Qi-zhong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第6期696-703,共8页
The mechanism of flow turbulence, sediment supply conditions, and sediment transport patterns that affect the adsorption of cadmium ions onto sediment particles in natural waters are experimentally simulated and studi... The mechanism of flow turbulence, sediment supply conditions, and sediment transport patterns that affect the adsorption of cadmium ions onto sediment particles in natural waters are experimentally simulated and studied both in batch reactors and in a turbulence simulation tank. By changing the agitation conditions, the sediment transport in batch reactors can be categorized into bottom sediment-dominated sediment and suspended sediment-dominated sediment. It is found that the adsorption rate of bottom sediment is much less than that of suspended sediment, but the sediment transport pattern does not affect the final (equilibrium) concentration of dissolved cadmium. This result indicates that the parameters of an adsorption isotherm are the same regardless of the sediment transport pattern. In the turbulence simulation tank, the turbulence is generated by harmonic grid-stirred motions, and the turbulence intensity is quantified in terms of eddy diffusivity, which is equal to 9.84F (F is the harmonic vibration frequency) and is comparable to natural surface water conditions. When the turbulence intensity of flow is low and sediment particles stay as bottom sediment, the adsorption rate is significantly low, and the adsorption quantity compared with that of suspended sediment is negligible in the 6 h duration of the experiment. This result greatly favors the simplification of the numerical modeling of heavy metal pollutant transformation in natural rivers. When the turbulence intensity is high but bottom sediment persists, the rate and extent of descent of the dissolved cadmium concentration in the tank noticeably increase, and the time that is required to reach adsorption equilibrium also increases considerably due to the continuous exchange that occurs between the suspended sediment and the bottom sediment. A comparison of the results of the experiments in the batch reactor and those in the turbulence simulation tank reveals that the adsorption ability of the sediment, and in particular the adsorption rate, is greatly over-estimated in the batch reactor. 展开更多
关键词 water flow sediment transport POLLUTANT INTERACTIONS turbulence adsorption
下载PDF
Coupled Model of Two-phase Debris Flow,Sediment Transport and Morphological Evolution 被引量:5
9
作者 HE Siming OUYANG Chaojun +1 位作者 LIU Wei WANG Dongpo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2206-2215,共10页
The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influence... The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influences the amplitude of the volume fraction. In this paper, we present a depth-averaged two-phase debris-flow model describing the simultaneous evolution of the phase velocity and depth, the solid and fluid volume fractions and the bed morphological evolution. The model employs the Mohr–Coulomb plasticity for the solid stress, and the fluid stress is modeled as a Newtonian viscous stress. The interfacial momentum transfer includes viscous drag and buoyancy. A new extended entrainment rate formula that satisfies the boundary momentum jump condition (Iverson and Ouyang, 2015) is presented. In this formula, the basal traction stress is a function of the solid volume fraction and can take advantage of both the Coulomb and velocity-dependent friction models. A finite volume method using Roe’s Riemann approximation is suggested to solve the equations. Three computational cases are conducted and compared with experiments or previous results. The results show that the current computational model and framework are robust and suitable for capturing the characteristics of debris flows. 展开更多
关键词 debris flows two-phase model sediment transport entrainment rate finite volume method
下载PDF
Numerical Study on Seasonal Transportation of the Suspended Sediments in the Modern Yellow River Mouth Effected by the Artificial Water and Sediment Regulation 被引量:3
10
作者 WANG Nan QIAO Lulu +5 位作者 LI Guangxue ZHONG Yi SONG Dehai DING Dong GAO Fei JI Fengying 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第1期20-30,共11页
Since 2002, an artificial water and sediment regulation(AWSR) has been carried out, which largely reduced water and sediment discharged from the Yellow River into the Bohai Sea. Although the sediment transport in the ... Since 2002, an artificial water and sediment regulation(AWSR) has been carried out, which largely reduced water and sediment discharged from the Yellow River into the Bohai Sea. Although the sediment transport in the Yellow River Mouth(YRM) has been observed and modeled intensively since AWSR, but preferentially for the non-storm conditions. In this study, a three-dimensional current-wave-sediment coupled model, DHI-MIKE numerical model, was used to examine the seasonal suspended-sediment transport in the YRM after the AWSR. Results show that the seasonal distribution of suspended-sediments in the YRM is dominated by wind and wave rather than river input. The major transport pathway of suspended-sediments is from the western Laizhou Bay to the Bohai Strait during the winter monsoon, especially in storm events. In addition, about 66% of the river sediments deposit within 30 km of the YRM, which is smaller than previous estimations. It suggests that the YRM has been eroded in recent decades. 展开更多
关键词 YELLOW River MOUTH artificial water and sediment regulation MIKE suspended-sediment transport SEASONAL variation
下载PDF
The reverse sediment transport trend between abandoned Huanghe River(Yellow River) Delta and radial sand ridges along Jiangsu coastline of China——an evidence from grain size analysis 被引量:5
11
作者 LIU Tao SHI Xuefa +1 位作者 LI Chaoxina YANG Gang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第6期83-91,共9页
To reveal the sediment transporting mechanism between the abandoned Huanghe River (Yellow River) Delta and radial sand ridges, “End Member” Model and grain size trend analysis have been employed to separate the “... To reveal the sediment transporting mechanism between the abandoned Huanghe River (Yellow River) Delta and radial sand ridges, “End Member” Model and grain size trend analysis have been employed to separate the “dynamic populations” in the surficial sediment particle spectra and to determine the possible sediment transporting pathway. The results reveal four “dynamic subpopulations”(EM1 to EM4) and two reverse sediment transporting directions: a northward transport tend from the radial sand ridges to mud patch, and a southward transport trend in deep water area outside the mud patch. Combined with the published hydrodynamic information, the transporting mechanism of dynamic populations has been discussed, and the main conclusion is that the transporting of finer subpopulations EM1 and EM2 is controlled by the “anticlockwise residual current circulation” forming during tidal cycle, which favor a northward transporting trend and the forming of mud patch on the north of radial sand ridges, while the transporting of coarser EM3 is mainly controlled by wind driven drift in winter, which favors a southward transporting direction. 展开更多
关键词 radial sand ridges sediment transport grain size trend analysis end member model
下载PDF
Sediment transport in the Luanhe River delta:grain size trend analysis 被引量:3
12
作者 YU Xiaoxiao LI Tiegang +7 位作者 GU Dongqi FENG Aiping LIU Shihao LI Ping XU Guoqiang YAN Wenwen ZHANG Zhiwei ZHU Zhengtao 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第3期982-997,共16页
Sediment grain size in the deltaic environment of the Luanhe River(LR),Liaoning,China,contains sediment transport pathway information useful in elucidating the shoreline change and fluvialmarine interaction.In this st... Sediment grain size in the deltaic environment of the Luanhe River(LR),Liaoning,China,contains sediment transport pathway information useful in elucidating the shoreline change and fluvialmarine interaction.In this study,we utilized numerical partitioning of the sedimentary components and geostatistical grain size trend analysis(GSTA)to define the sediment transport pattern in the Luanhe River delta(LRD)and interpolated the sediment transport pattern using content changes of end numbers(EM).EM1(the mean grain size 7.12Ф,fine silt),EM2(2.37Ф,fine sand),and EM3(1.27Ф,medium sand)components were identified by the numerical partitioning by GSTA.Kriging interpolation method was used to interpolate the parameters of the grain size for the regular grid,and the interpolation radius was 0.015 decimal degree.We chose 0.09 decimal degree as the characteristic distance for GSTA in the semivariogram model using the geostatistical method.The FB(-)case(finer,better sorted and more negatively skewed)was adopted in GSTA for its satisfaction in the Global Moran’s I test.The result of the GSTA shows that the sediments in the south barriers(SBs)were transported to the southwest of the study area.The sediments in the north,in the SE direction of sediment transport trend from the river mouth,indicated that the sediments in the north of the study area were transported from the LR to the northern beaches,and to the south and east of the study area.The sediment transport trend that simplified by GSTA as the FB(-)case was approved by the content changes of sedimentary components(i.e.EM1,EM2,and EM3).In addition,the turbulent jet diffusion pattern indicated that the coarse sediments(EM3)were delivered by LR during the flood season,and the EM2 and EM1 were from wave and tide,respectively. 展开更多
关键词 Luanhe River DELTA sediment transport GRAIN-SIZE partitioning geostatistical GRAIN size TREND analysis(GSTA)
下载PDF
Equilibrium sediment transport in lower Yellow River during later sediment-retaining period of Xiaolangdi Reservoir 被引量:3
13
作者 Shao-lei Guo Dong-po Sun +1 位作者 En-hui Jiang Peng Li 《Water Science and Engineering》 EI CAS CSCD 2015年第1期78-84,共7页
The Xiaolangdi Reservoir has entered the later sediment-retaining period, and new sediment transport phenomena and channel re-estab- lishing behaviors are appearing. A physical model test was used to forecast the scou... The Xiaolangdi Reservoir has entered the later sediment-retaining period, and new sediment transport phenomena and channel re-estab- lishing behaviors are appearing. A physical model test was used to forecast the scouring and silting trends of the lower Yellow River. Based on water and sediment data from the lower Yellow River during the period from 1960 to 2012, and using a statistical method, this paper analyzed the sediment transport in sediment-laden flows with different discharges and sediment concentrations in the lower Yellow River. The results show that rational water-sediment regulation is necessary to avoid silting in the later sediment-retaining period. The combination of 3 000 m^3/s 〈 Q 〈 4 000 m^3/s and 20 kg/m^3 〈 S 〈 60 kg/m^3 (where Q is the discharge and S is the sediment concentration) at the Huayuankou section is considered an optimal combination for equilibrium sediment transport in the lower Yellow River over a long period of time. 展开更多
关键词 Lower Yellow River Xiaolangdi Reservoir Water-sediment regulation Equilibrium sediment transport Later sediment-retaining period
下载PDF
Numerical simulation of sediment transport in coastal waves and wave-induced currents 被引量:2
14
作者 TANG Jun LYU Yigang SHEN Yongming 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第9期111-116,共6页
Prediction of coastal sediment transport is of particularly importance for analyzing coast erosion accurately and solving the corresponding coast protection engineering problems.The present study provided a numerical ... Prediction of coastal sediment transport is of particularly importance for analyzing coast erosion accurately and solving the corresponding coast protection engineering problems.The present study provided a numerical scheme for sediment transport in coastal waves and wave-induced currents.In the scheme,the sand transport model was implemented with wave refraction-diffraction model and near-shore current model.Coastal water wave was simulated by using the parabolic mild-slope equation in which wave refraction,diffraction and breaking effects are considered.Wave-induced current was simulated by using the nonlinear shallow water equations in which wave provides radiation stresses for driving current.Then,sediment transport in waves and wave-induced currents was simulated by using the two-dimensional suspended sediment transport equations for suspended sediment and the bed-load transport equation for bed load.The numerical scheme was validated by experiment results from the Large-scale Sediment Transport Facility at the US Army Corps of Engineer Research and Development Center in Vicksburg.The numerical results showed that the present scheme is an effective tool for modeling coastal sediment transport in waves and near-shore currents. 展开更多
关键词 numerical modeling coastal wave wave-induced current sediment transport suspended sediment bed-load
下载PDF
Diagnostic experiments for transport mechanisms of suspended sediment discharged from the Yellow River in the Bohai Sea 被引量:3
15
作者 LI Guosheng XUE Xinghua +2 位作者 LIU Ying WANG Hailong LIAO Heping 《Journal of Geographical Sciences》 SCIE CSCD 2010年第1期49-63,共15页
Five diagnostic experiments with a 3D baroclinic hydrodynamic and sediment transport model ECOMSED in couple with the third generation wave model SWAN and the Grant-Madsen bottom boundary layer model driven by the mon... Five diagnostic experiments with a 3D baroclinic hydrodynamic and sediment transport model ECOMSED in couple with the third generation wave model SWAN and the Grant-Madsen bottom boundary layer model driven by the monthly sediment load of the Yellow River, were conducted to separately diagnose effects of different hydrodynamic factors on transport of suspended sediment discharged from the Yellow River in the Bohai Sea. Both transport and spatio-temporal distribution of suspended sediment concentration in the Bohai Sea were numerially simulated. It could be from the Yellow River cannot be delivered in concluded that suspended sediment discharged long distance under the condition of tidal current. Almost all of sediments from the Yellow River are deposited outside the delta under the condition of wind-driven current, and only very small of them are transported faraway. On the basis of wind forcing, sediments from the Yellow River are mainly transported north-northwestward, and others which are first delivered to the Laizhou Bay are continuously moved northward. An obvious 3D structure characteristic of sediment transport is produced in the wind-driven and tide-induced residual circulation condition. Transport patterns at all layers are generally consistent with circulation structure, but there is apparent deviation between the depth-averaged sediment flux and the circulation structure. The phase of temporal variation of sediment concentration is consistent with that of the bottom shear stress, both of which are proved to have a ten-day cycle in wave and current condition. 展开更多
关键词 sediment from the Yellow River suspended transport dynamic mechanism diagnostic experiment
下载PDF
Evaluation of an erosion-sediment transport model for a hillslope using laboratory flume data 被引量:3
16
作者 Anya Catherine CARGUELLES MinJae JUNG +7 位作者 Kristine Joy BMALLARI GiJung PAK Hafzullah AKSOY Levent M KAVVAS Ebru ERIS JaeYoung YOON YoungJoon LEE SeonHwa HONG 《Journal of Arid Land》 SCIE CSCD 2014年第6期647-655,共9页
Climate change can escalate rainfall intensity and cause further increase in sediment transport in arid lands which in turn can adversely affect water quality. Hence, there is a strong need to predict the fate of sedi... Climate change can escalate rainfall intensity and cause further increase in sediment transport in arid lands which in turn can adversely affect water quality. Hence, there is a strong need to predict the fate of sediments in order to provide measures for sound erosion control and water quality management. The presence of micro- topography on hillslopes influences processes of runoff generation and erosion, which should be taken into account to achieve more accurate modelling results. This study presents a physically based mathematical model for erosion and sediment transport coupled to one-dimensional overland flow equations that simulate rainfall-runoff generation on the rill and interrill areas of a bare hillslope. Modelling effort at such a fine resolution considering the flow con- nection between Jnterrill areas and rills is rarely verified. The developed model was applied on a set of data gath- ered from an experimental setup where a 650 cm×136 cm erosion flume was pre-formed with a longitudinal rill and interrJll having a plane geometry and was equipped with a rainfall simulator that reproduces natural rainfall characteristics. The flume can be given both longitudinal and lateral slope directions. For calibration and validation, the model was applied on the experimental results obtained from the setup of the flume having 5% lateral and 10% longitudinal slope directions under rainfall intensities of 105 and 45 mm/h, respectively. Calibration showed that the model was able to produce good results based on the R2 (0.84) and NSE (0.80) values. The model performance was further tested through validation which also produced good statistics (R2=0.83, NSE=0.72). Results in terms of the sedigraphs, cumulative mass curves and performance statistics suggest that the model can be a useful and an important step towards verifying and improving mathematical models of erosion and sediment transport. 展开更多
关键词 climate change EROSION rill and interrill physically based model sediment transport
下载PDF
RESEARCHES ON ENVIRONMENTAL CHANGES OF THE YELLOW RIVER BASIN AND LAWS OF WATER AND SEDIMENT TRANSPORTATION 被引量:2
17
作者 Ye Qingchao (Institute of Geography, CAS, Beijing 100101People’s Republich of China) 《Journal of Geographical Sciences》 SCIE CSCD 1995年第1期63-75,共13页
The major project 'Researches on the environmental changes of the Yellow River Basin and laws of water and sediment transponaion' wasmanaged jointly by the Institute of Geography of Chinese Academy of Sciences... The major project 'Researches on the environmental changes of the Yellow River Basin and laws of water and sediment transponaion' wasmanaged jointly by the Institute of Geography of Chinese Academy of Sciences(CAS) and State Planning Commission with the Yellow River ConservancyCommission of Ministry of Water Conservancy of China covering the period of July, 1988-December, 1992. All of the anticipated objectives of the project had been completely reached, and research results of the project were checkedand accepted in July, 1993 in Beijing. The project is charactenzed by thecomprehensiveness in research with systematic and all-around conent throughclosely combining environmotal changes with water and sedimenttransportation in the Yellow River basin, and giving full play to the superiority of the cooperation of multiple disciplines and units.A series of major problemswere well replied in the end. Besides studying some problems of the moment,some basic researches on the prosped of reducing sediments delivered into theYellow River after 2000, the ways to prolonging the lifetime of the current lowerYellow River channel, the program of comprehensive management and development of the drainage basin, etc., were carried out. Moreover, the projecthas outstanding features comparing with other researches on the large rivers inChina, and is uncommon in the field of researches on rivers all over the world. 展开更多
关键词 river sedimentation transport ENVIRONMENT
下载PDF
Sediment Transport in the Nearshore Area of Phoenix Island 被引量:4
18
作者 HU Rijun MA Fang +6 位作者 WU Jianzheng ZHANG Wei JIANG Shenghui XU Yongchen ZHU Longhai WANG Nan LIU Aijiang 《Journal of Ocean University of China》 SCIE CAS 2016年第5期767-782,共16页
Based on the measured data, suspended sediment concentration, surface sediment grain size, current and waves, the sediment transport mechanisms and pathways in the Phoenix Island area were analyzed using methods of fl... Based on the measured data, suspended sediment concentration, surface sediment grain size, current and waves, the sediment transport mechanisms and pathways in the Phoenix Island area were analyzed using methods of flux decomposition and Grain Size Trend Analysis(GSTA). The results show that net suspended sediment is mainly transported by average current, Stokes drift, and gravitational circulation. The transport direction of suspended sediment is varying and basically following the direction of residual tidal currents. Surface sediment transport pathways are primarily parallel to the coastline along with two convergent centers. Waves and longshore currents have a significant influence on sediment transport, but the influence is limited due to a steep and deep underwater bank. Tidal current is the main controlling factor for sediment transport, especially in the deep water area. Neither suspended nor surface sediment is transported towards the southwest. The South Shandong Coastal Current(SSCC) has little effect on sediment transport processes in the nearshore area of Phoenix Island. 展开更多
关键词 Phoenix Island sediment transport dynamic mechanism
下载PDF
Clay mineral distribution in surface sediments of the South China Sea and its significance for in sediment sources and transport 被引量:16
19
作者 刘建国 陈木宏 +1 位作者 陈忠 颜文 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2010年第2期407-415,共9页
Clay minerals of surface sediments in the South China Sea (SCS) are analyzed with X-ray diffraction, and their transport is explored with a grain size trend analysis (GSTA) model. Results show that clay mineral types ... Clay minerals of surface sediments in the South China Sea (SCS) are analyzed with X-ray diffraction, and their transport is explored with a grain size trend analysis (GSTA) model. Results show that clay mineral types in various sedimentary environments have different sediment sources and transport routes. Sediments in the northern SCS (north of 20°N) between the southwest of Taiwan Island and the outer mouth of the Pearl River have high contents of illite and chlorite, which are derived mainly from sediments on Taiwan Island and/or the Yangtze River. Sediments from the Pearl River are characterized by high kaolinite and low smectite content, and most are distributed in the area between the mouth of the Pearl River and northeast of Hainan Island and transported vertically from the continental shelf to the slope. Characterized by high illite content, sediments from Kalimantan Island are transported toward the Nansha Trough. Sediments from Luzon Island are related with volcanic materials, and are transported westwards according to smectite distribution. On the Sunda Shelf, sediments from the Mekong River are transported southeast in the north while sediments from the Indonesian islands are transported northward in the south. Ascertaining surface sediment sources and their transport routes will not only improve understanding of modern transportation and depositional processes, but also aid paleoenvironmental and paleoclimatic analysis of the SCS. 展开更多
关键词 表层沉积物 运输路线 泥沙来源 南中国海 矿产分布 粘土矿物分析 珠江口地区 蒙脱石含量
下载PDF
Scale effects of eroded sediment transport in Wujiang River Basin, Guizhou Province, China 被引量:3
20
作者 WANG Yao HOU Li-sheng CAI Yun-long 《Journal of Groundwater Science and Engineering》 2017年第2期182-192,共11页
In recent years, research on spatial scale and scale transformation of eroded sediment transport has become a forefront field in current soil erosion research, but there are very few studies on the scale effect proble... In recent years, research on spatial scale and scale transformation of eroded sediment transport has become a forefront field in current soil erosion research, but there are very few studies on the scale effect problem in Karst regions of China. Here we quantitatively extracted five main factors influencing soil erosion, namely rainfall erosivity, soil erodibility, vegetative cover and management, soil and water conservation, and slope length and steepness. Regression relations were built between these factors and also the sediment transport modulus and drainage area, so as to initially analyze and discuss scale effects on sediment transport in the Wujiang River Basin(WRB). The size and extent of soil erosion influencing factors in the WRB were gauged from: Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM), precipitation data, land use, soil type and Normalized Difference Vegetation Index(NDVI) data from Global Inventory Modeling and Mapping Studies(GIMMS) or Advanced Very High Resolution Radiometer(AVHRR), and observed data from hydrometric stations. We find that scaling effects exist between the sediment transport modulus and the drainage area. Scaling effects are expressed after logarithmic transformation by a quadratic function regression relationship where the sediment transport modulus increases before decreasing, alongside changes in the drainage area. Among the five factors influencing soil erosion, slope length and steepness increases first and then decreases, alongside changes in the drainage area, and are the main factors determining the relationship between sediment transport modulus and drainage area. To eliminate the influence of scale effects on our results, we mapped the sediment yield modulus of the entire WRB, adopting a 1 000 km^2 standard area with a smaller fitting error for all sub-basins, and using the common Kriging interpolation method. 展开更多
关键词 sediment transport modulus Scale effect Soil erosion Wujiang River Basin
下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部