Several popular time-frequency techniques,including the Wigner-Ville distribution,smoothed pseudo-Wigner-Ville distribution,wavelet transform,synchrosqueezing transform,Hilbert-Huang transform,and Gabor-Wigner transfo...Several popular time-frequency techniques,including the Wigner-Ville distribution,smoothed pseudo-Wigner-Ville distribution,wavelet transform,synchrosqueezing transform,Hilbert-Huang transform,and Gabor-Wigner transform,are investigated to determine how well they can identify damage to structures.In this work,a synchroextracting transform(SET)based on the short-time Fourier transform is proposed for estimating post-earthquake structural damage.The performance of SET for artificially generated signals and actual earthquake signals is examined with existing methods.Amongst other tested techniques,SET improves frequency resolution to a great extent by lowering the influence of smearing along the time-frequency plane.Hence,interpretation and readability with the proposed method are improved,and small changes in the time-varying frequency characteristics of the damaged buildings are easily detected through the SET method.展开更多
A hybrid time-frequency method known as Gabor-Wigner transform (GWT) is introduced in this paper for examining the time-frequency patterns of earthquake damaged buildings. GWT is developed by combining the Gabor trans...A hybrid time-frequency method known as Gabor-Wigner transform (GWT) is introduced in this paper for examining the time-frequency patterns of earthquake damaged buildings. GWT is developed by combining the Gabor transform (GT) and Wigner-Ville distribution (WVD). GT and WVD have been used separately on synthetic and recorded earthquake data to identify frequency shifting due to earthquake damages, but GT is prone to windowing effect and WVD involves ambiguity function. Hence to obtain better clarity and to remove the cross terms (frequency interference), GT and WVD are judiciously combined and the resultant GWT used to identify frequency shifting. Synthetic seismic response of an instrumented building and real-time earthquake data recorded on the building were investigated using GWT. It is found that GWT offers good accuracy for even slow variations in frequency, good time-frequency resolution, and localized response. Presented results confirm the efficacy of GWT when compared with GT and WVD used separately. Simulation results were quantified by the Renyi entropy measures and GWT shown to be an adequate technique in identifying localized response for structural damage detection.展开更多
This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical...This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical basis of short time Fourier transform,Gabor transform,wavelet transform,S-transform,Wigner distribution,Wigner-Ville distribution,Pseudo Wigner-Ville distribution,Smoothed Pseudo Wigner-Ville distribution,Choi-William distribution,Born-Jordan Distribution and cone shape distribution are presented.The strengths and weaknesses of each technique are verified by applying them to a particular synthetic seismic signal and recorded real time earthquake data.展开更多
Shallow gas is composed of all kinds of shallow buried natural gas resources( < 1500 m) with relatively small reserve for each gas resource. It has some advantages such as shallow burial depth,good physical propert...Shallow gas is composed of all kinds of shallow buried natural gas resources( < 1500 m) with relatively small reserve for each gas resource. It has some advantages such as shallow burial depth,good physical properties and the huge accumulations. Based on the Wigner-Vill distribution,a general spectral decomposition method is applied in the shallow gas detection. Cone-shaped kernel function filtering method is used to suppress cross-terms of the Wigner-Ville distribution,which is tested on field seismic data. Because of shallow gas reservoir has a characteristic that low frequency energy is stronger and high frequency energy is weaker,it indicates the presence of shallow gas successfully.展开更多
Wigner-Ville distribution (WVD) is recognized as being a powerful tool and a nucleus in time-frequency representation (TFR) which gives an excellent time-frequency concentration, and more importantly, has many desirab...Wigner-Ville distribution (WVD) is recognized as being a powerful tool and a nucleus in time-frequency representation (TFR) which gives an excellent time-frequency concentration, and more importantly, has many desirable properties. A major shortcoming of WVD is the inherent cross-term (CT) interference. Although solutions to this problem from the bulk of contributions to the literature concerning TFR are currently available, none has been able to completely eliminate the CT’s in WVD. It is therefore a common belief that if there exists an auxiliary time-frequency distribution (TFD) which has the same auto-terms (AT’s) as that in WVD, but has CT’s with the opposite sign, then, by adding the auxiliary TFD to WVD, an ideal TFD, which preserves the concentration of WVD while annihilating the CT’s, is readily obtained. However, we prove that the auxiliary TFD does not exist. Moreover, it is found that in general, CT free joint distributions with their concentrations close to that of WVD do not exist either.展开更多
文摘Several popular time-frequency techniques,including the Wigner-Ville distribution,smoothed pseudo-Wigner-Ville distribution,wavelet transform,synchrosqueezing transform,Hilbert-Huang transform,and Gabor-Wigner transform,are investigated to determine how well they can identify damage to structures.In this work,a synchroextracting transform(SET)based on the short-time Fourier transform is proposed for estimating post-earthquake structural damage.The performance of SET for artificially generated signals and actual earthquake signals is examined with existing methods.Amongst other tested techniques,SET improves frequency resolution to a great extent by lowering the influence of smearing along the time-frequency plane.Hence,interpretation and readability with the proposed method are improved,and small changes in the time-varying frequency characteristics of the damaged buildings are easily detected through the SET method.
文摘A hybrid time-frequency method known as Gabor-Wigner transform (GWT) is introduced in this paper for examining the time-frequency patterns of earthquake damaged buildings. GWT is developed by combining the Gabor transform (GT) and Wigner-Ville distribution (WVD). GT and WVD have been used separately on synthetic and recorded earthquake data to identify frequency shifting due to earthquake damages, but GT is prone to windowing effect and WVD involves ambiguity function. Hence to obtain better clarity and to remove the cross terms (frequency interference), GT and WVD are judiciously combined and the resultant GWT used to identify frequency shifting. Synthetic seismic response of an instrumented building and real-time earthquake data recorded on the building were investigated using GWT. It is found that GWT offers good accuracy for even slow variations in frequency, good time-frequency resolution, and localized response. Presented results confirm the efficacy of GWT when compared with GT and WVD used separately. Simulation results were quantified by the Renyi entropy measures and GWT shown to be an adequate technique in identifying localized response for structural damage detection.
文摘This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical basis of short time Fourier transform,Gabor transform,wavelet transform,S-transform,Wigner distribution,Wigner-Ville distribution,Pseudo Wigner-Ville distribution,Smoothed Pseudo Wigner-Ville distribution,Choi-William distribution,Born-Jordan Distribution and cone shape distribution are presented.The strengths and weaknesses of each technique are verified by applying them to a particular synthetic seismic signal and recorded real time earthquake data.
文摘Shallow gas is composed of all kinds of shallow buried natural gas resources( < 1500 m) with relatively small reserve for each gas resource. It has some advantages such as shallow burial depth,good physical properties and the huge accumulations. Based on the Wigner-Vill distribution,a general spectral decomposition method is applied in the shallow gas detection. Cone-shaped kernel function filtering method is used to suppress cross-terms of the Wigner-Ville distribution,which is tested on field seismic data. Because of shallow gas reservoir has a characteristic that low frequency energy is stronger and high frequency energy is weaker,it indicates the presence of shallow gas successfully.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 60172026)the Basic Research Foundation of Tsinghua University (Grant No. JC2001028) and the Scientific Innovation Foundation of Ph. D. Candidates of Tsinghua Uni
文摘Wigner-Ville distribution (WVD) is recognized as being a powerful tool and a nucleus in time-frequency representation (TFR) which gives an excellent time-frequency concentration, and more importantly, has many desirable properties. A major shortcoming of WVD is the inherent cross-term (CT) interference. Although solutions to this problem from the bulk of contributions to the literature concerning TFR are currently available, none has been able to completely eliminate the CT’s in WVD. It is therefore a common belief that if there exists an auxiliary time-frequency distribution (TFD) which has the same auto-terms (AT’s) as that in WVD, but has CT’s with the opposite sign, then, by adding the auxiliary TFD to WVD, an ideal TFD, which preserves the concentration of WVD while annihilating the CT’s, is readily obtained. However, we prove that the auxiliary TFD does not exist. Moreover, it is found that in general, CT free joint distributions with their concentrations close to that of WVD do not exist either.