In the practical environment,it is very common for the simultaneous occurrence of base excitation and crosswind.Scavenging the combined energy of vibration and wind with a single energy harvesting structure is fascina...In the practical environment,it is very common for the simultaneous occurrence of base excitation and crosswind.Scavenging the combined energy of vibration and wind with a single energy harvesting structure is fascinating.For this purpose,the effects of the wind speed and random excitation level are investigated with the stochastic averaging method(SAM)based on the energy envelope.The results of the analytical prediction are verified with the Monte-Carlo method(MCM).The numerical simulation shows that the introduction of wind can reduce the critical excitation level for triggering an inter-well jump and make a bi-stable energy harvester(BEH)realize the performance enhancement for a weak base excitation.However,as the strength of the wind increases to a particular level,the influence of the random base excitation on the dynamic responses is weakened,and the system exhibits a periodic galloping response.A comparison between a BEH and a linear energy harvester(LEH)indicates that the BEH demonstrates inferior performance for high-speed wind.Relevant experiments are conducted to investigate the validity of the theoretical prediction and numerical simulation.The experimental findings also show that strong random excitation is favorable for the BEH in the range of low wind speeds.However,as the speed of the incoming wind is up to a particular level,the disadvantage of the BEH becomes clear and evident.展开更多
In this paper, we investigate experimentally the concept of energy har- vesting from galloping oscillations with a focus on wake and turbulence effects. The .harvester is composed of a unimorph piezoelectric cantileve...In this paper, we investigate experimentally the concept of energy har- vesting from galloping oscillations with a focus on wake and turbulence effects. The .harvester is composed of a unimorph piezoelectric cantilever beam with a square cross-section tip mass. In one case, the harvester is placed in the wake of another galloping harvester with the objective of determining the wake effects on the response of the harvester. In the second case, meshes were placed upstream of the harvester with the objective of investigating the effects of upstream turbulence on the response of the harvester. The results show that both wake effects and up- stream turbulence significantly affect the response of the harvester. Depending on the spacing between the two squares and the opening size of the mesh, wake and upstream turbulence can positively enhance the level of the harvested power.展开更多
Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the gallopin...Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the galloping mechanism, this paper proposes an online monitoring system for tracking galloping profile of power transmission lines based on wireless inertial measurement units (WIMUs). The system is composed of three modules: wireless inertial measurement nodes, monitoring base station, and remote monitoring station. After detailing the hardware system, the corresponding software which positions and displays galloping profile of the transmission line in real-time is outlined. The feasibility of the proposed on-line monitoring system is demonstrated through a series of experiments at the State Grid Key Laboratory of Power Overhead Transmission Line Galloping (Zhengzhou, China) by taking into account different vibration patterns.展开更多
A new type of element which is suitable for solving the modes of thegalloping long multi-span bundle conductor structures is presented. The element is composed of allsub-conductor segments between two spacers. Based o...A new type of element which is suitable for solving the modes of thegalloping long multi-span bundle conductor structures is presented. The element is composed of allsub-conductor segments between two spacers. Based on the linearized governing differential equationsof the conductors, the mass matrix and stiffness matrix of the element in consideration of theconstrained relations imposed on the conductors by spacers are derived. The dynamic characteristicsof the galloping control devices can be directly added to the element. The modes for an actual powerline structure are computed by using the element formula and FEM procedures, where seven cases ofdifferent galloping control device allocations are considered. Compared with the measured data, themethod is shown to be reliable and effective. Analysis and discussions of the computational resultsare given. Some hints that are helpful to further investigation of galloping are also obtained .展开更多
Influenced by strong winds associated with a southeastward-moving Mongolian cyclone,a severe transmission line galloping occurred in Baiyin City,Gansu Province,on 14 April 2020.This caused a tripping incident of the t...Influenced by strong winds associated with a southeastward-moving Mongolian cyclone,a severe transmission line galloping occurred in Baiyin City,Gansu Province,on 14 April 2020.This caused a tripping incident of the transmission line in this region.Based on the hourly,0.5°×0.5°,ECMWF ERA5 reanalysis data,this study investigated the formation mechanisms of the Mongolian cyclone and its associated strong winds.Results from the vorticity budget indicate that the convergence-related vertical stretching and the upward transport of cyclonic vorticity governed formation of the Mongolian cyclone in this event;whereas,tilting and export of cyclonic vorticity from the central region of the cyclone mainly decelerated the cyclone’s formation.The kinetic energy(KE)budget shows that the wind associated with the Mongolian cyclone was mainly enhanced by the positive work of the pressure gradient force.Unlike some typical strong wind events in Northwest China,during this event,no significant downward momentum transportation from the upper troposphere was found.The vertical transport of KE exerted a slightly favorable effect on the KE increase around the location where the transmission line galloping trip appeared.In contrast,the horizontal transport mainly caused an export of KE from this region,which applied an overall negative effect on the wind enhancement associated with the Mongolian cyclone.展开更多
The low power and narrow speed range remain bottlenecks that constrain the application of small-scale wind energy harvesting.This paper proposes a simple,lowcost,and reliable method to address these critical issues.A ...The low power and narrow speed range remain bottlenecks that constrain the application of small-scale wind energy harvesting.This paper proposes a simple,lowcost,and reliable method to address these critical issues.A galloping energy harvester with the cooperative mode of vibration and collision(GEH-VC)is presented.A pair of curved boundaries attached with functional materials are introduced,which not only improve the performance of the vibration energy harvesting system,but also convert more mechanical energy into electrical energy during collision.The beam deforms and the piezoelectric energy harvester(PEH)generates electricity during the flow-induced vibration.In addition,the beam contacts and separates from the boundaries,and the triboelectric nanogenerator(TENG)generates electricity during the collision.In order to reduce the influence of the boundaries on the aerodynamic performance and the feasibility of increasing the working area of the TENG,a vertical structure is designed.When the wind speed is high,the curved boundaries maintain a stable amplitude of the vibration system and increase the frequency of the vibration system,thereby avoiding damage to the piezoelectric sheet and improving the electromechanical conversion efficiency,and the TENG works with the PEH to generate electricity.Since the boundaries can protect the PEH at high wind speeds,its stiffness can be designed to be low to start working at low wind speeds.The electromechanical coupling dynamic model is established according to the GEH-VC operating principle and is verified experimentally.The results show that the GEH-VC has a wide range of operating wind speeds,and the average power can be increased by 180%compared with the traditional galloping PEH.The GEH-VC prototype is demonstrated to power a commercial temperature sensor.This study provides a novel perspective on the design of hybrid electromechanical conversion mechanisms,that is,to combine and collaborate based on their respective characteristics.展开更多
This paper aims to numerically investigate the effects of parametric instability on piezoelectric energy harvesting from the transverse galloping of a square prism. A two degrees-of-freedom reduced-order model for thi...This paper aims to numerically investigate the effects of parametric instability on piezoelectric energy harvesting from the transverse galloping of a square prism. A two degrees-of-freedom reduced-order model for this problem is proposed and numerically integrated. A usual quasi-steady galloping model is applied, where the transverse force coefficient is adopted as a cubic polynomial function with respect to the angle of attack. Time-histories of nondimensional prism displacement, electric voltage and power dissipated at both the dashpot and the electrical resistance are obtained as functions of the reduced velocity. Both, oscillation amplitude and electric voltage, increased with the reduced velocity for all parametric excitation conditions tested. For low values of reduced velocity, 2:1 parametric excitation enhances the electric voltage. On the other hand, for higher reduced velocities, a 1:1 parametric excitation(i.e., the same as the natural frequency) enhances both oscillation amplitude and electric voltage. It has been also found that, depending on the parametric excitation frequency, the harvested electrical power can be amplified in 70% when compared to the case under no parametric excitation.展开更多
Based on the principle of virtual work, an updated Lagrangian finite element formulation for the geometrical large deformation analysis of galloping of the iced conductor in an overhead transmission line is developed....Based on the principle of virtual work, an updated Lagrangian finite element formulation for the geometrical large deformation analysis of galloping of the iced conductor in an overhead transmission line is developed. In numerical simulation, a three-node isoparametric cable element with three translational and one torsional degrees-of-freedom at each node is used to discretize the transmission line. The nonlinear dynamic system equation is solved with the Newmark time integration method and the Newton-Raphson nonlinear iteration. Numerical examples demonstrate the efficiency of the presented method and the developed finite element program. A new possible galloping mode, which may reflect the saturation phenomenon of a nonlinear dynamic system, is discovered under the condition that the lowest order of vertical natural frequency of the transmission line is approximately two times of the horizontal one.展开更多
Galloping of conductor is a major hazard to safe operation of transmission lines. This paper introduces the basic galloping stability mechanism of conductor, design method of anti-galloping and the application of anti...Galloping of conductor is a major hazard to safe operation of transmission lines. This paper introduces the basic galloping stability mechanism of conductor, design method of anti-galloping and the application of anti-galloping double pendulum and integral eccentric pendulum in China. Galloping stability mechanism of conductor was established based on vertical galloping mechanism developed by Den Hartog and torsional galloping mechanism developed by O. Nigel. A design method of anti-galloping was derived and anti-galloping double pendulum and integral eccentric pendulum were developed. Applications to several transmission lines including a 500 kV transmission line of large span indicated that they have played important roles in anti-galloping.展开更多
In this paper,the response properties of galloping energy harvesters under bounded random parameter excitation are studied theoretically.The first-order approximate solution of the galloping energy harvester is derive...In this paper,the response properties of galloping energy harvesters under bounded random parameter excitation are studied theoretically.The first-order approximate solution of the galloping energy harvester is derived by applying the multi-scales method.The expression for the largest Lyapunov exponent that determines the trivial solution is derived,and the corresponding simulation diagrams,including the largest Lyapunov exponent diagrams and time domain diagrams,verify our results.Then the steady-state response moments of the nontrivial solution are studied using the moment method,and the analytical expressions for the first-order and second-order moments of the voltage amplitude are obtained,respectively.The corresponding results show that wind speed enhances the steady-state response moments of the voltage amplitude.Meanwhile,the voltage output can be controlled by adjusting the cubic coefficient.To further verify the response characteristics of the galloping energy harvester,the stationary probability density functions of the displacement and velocity are obtained by the Monte-Carlo simulation method.The results show that the wind speed enhances the displacement of the bluff and the damping ratios should be reduced asmuch as possible to improve the performance.What’smore,the piezoelectric materials also impact the performance of the energy harvester.展开更多
By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibra...By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibration of high-speed train and slab track system. The corresponding computer program was written by FORTRAN language. The dynamic responses of the high-speed train and slab track under cross-wind action were calculated. Meanwhile, the effects of the cross-wind on the dynamic responses of the system were also analyzed. The results show that the cross-wind has a significant influence on the lateral and vertical displacement responses of the car body, load reduction factor and overturning factor. For example, the maximum lateral displacement responses of the car body of the first trailer with and without cross-wind forces are 32.10 and 1.60 mm, respectively. The maximum vertical displacement responses of the car body of the first trailer with and without cross-wind forces are 6.60 and 3.29 mm, respectively. The maximum wheel load reduction factors of the first trailer with and without cross-wind forces are 0.43 and 0.22, respectively. The maximum overturning factors of the first trailer with and without cross-wind forces are 0.28 and 0.08, respectively. The cross-wind affects the derailment factor and lateral Sperling factor of the moving train to a certain extent. However, the lateral and vertical displacement responses of rails with the crnss-wind are almost the same as those without the cross-wind. The method presented and the corresponding computer program can be used to calculate the interaction between trains and track in cross-wind.展开更多
A finite different method is developed to predict the side force on a high speedtrain in a cross-wind at low yaw anglee. The k-εturbulence model with wallfunctions is employed. the solution algorithm is based on curv...A finite different method is developed to predict the side force on a high speedtrain in a cross-wind at low yaw anglee. The k-εturbulence model with wallfunctions is employed. the solution algorithm is based on curvilinearnonorthogonal coordinates,covariant velocity components ,and staggered gridarrangement. The convective fluxes are described by the Power tow Scheme.A highly deformed grid generated with an elliptic grid generator is used aroundthe comero of the cross-section of the train. The results obtained comparepositively with wind tunnel experinients.展开更多
Turbulence is expected to play a relevant role in the so-called conductor gallop phenomena,namely,the high-amplitude,low-frequency oscillation of overhead power lines due to the formation of ice structures and the ens...Turbulence is expected to play a relevant role in the so-called conductor gallop phenomena,namely,the high-amplitude,low-frequency oscillation of overhead power lines due to the formation of ice structures and the ensu-ing effect that wind can have on these.In this work,the galloping time history of a wire with distorted(fixed in time)shape due to the formation of ice is analyzed numerically in the frame of afluid-solid coupling method for different wind speeds and levels of turbulence.The results show that the turbulence intensity has a moderate effect on the increase of the conductor’s aerodynamic lift and drag coefficients due to ice accretion;nevertheless,the corresponding changes in the torsion coefficient are very significant and complicated.A high turbulence intensity can affect the torsion coefficient in a certain range of attack angles and increase the torsion angle of the conductor.Through comparison of the galloping phenomena for different wind velocities,it is found that the related amplitude grows significantly with an increase of the wind speed.For a relatively large wind speed,the galloping amplitude is more sensitive to the turbulence intensity.Moreover,the larger the turbulence intensity,the larger the conductor’s vertical and horizontal galloping amplitudes after icing.The torsion angle also increases with an increase in the wind speed and turbulence intensity.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12272355,1202520411902294)+1 种基金the Opening Foundation of Shanxi Provincial Key Laboratory for Advanced Manufacturing Technology of China(No.XJZZ202304)the Shanxi Provincial Graduate Innovation Project of China(No.2023KY629)。
文摘In the practical environment,it is very common for the simultaneous occurrence of base excitation and crosswind.Scavenging the combined energy of vibration and wind with a single energy harvesting structure is fascinating.For this purpose,the effects of the wind speed and random excitation level are investigated with the stochastic averaging method(SAM)based on the energy envelope.The results of the analytical prediction are verified with the Monte-Carlo method(MCM).The numerical simulation shows that the introduction of wind can reduce the critical excitation level for triggering an inter-well jump and make a bi-stable energy harvester(BEH)realize the performance enhancement for a weak base excitation.However,as the strength of the wind increases to a particular level,the influence of the random base excitation on the dynamic responses is weakened,and the system exhibits a periodic galloping response.A comparison between a BEH and a linear energy harvester(LEH)indicates that the BEH demonstrates inferior performance for high-speed wind.Relevant experiments are conducted to investigate the validity of the theoretical prediction and numerical simulation.The experimental findings also show that strong random excitation is favorable for the BEH in the range of low wind speeds.However,as the speed of the incoming wind is up to a particular level,the disadvantage of the BEH becomes clear and evident.
文摘In this paper, we investigate experimentally the concept of energy har- vesting from galloping oscillations with a focus on wake and turbulence effects. The .harvester is composed of a unimorph piezoelectric cantilever beam with a square cross-section tip mass. In one case, the harvester is placed in the wake of another galloping harvester with the objective of determining the wake effects on the response of the harvester. In the second case, meshes were placed upstream of the harvester with the objective of investigating the effects of upstream turbulence on the response of the harvester. The results show that both wake effects and up- stream turbulence significantly affect the response of the harvester. Depending on the spacing between the two squares and the opening size of the mesh, wake and upstream turbulence can positively enhance the level of the harvested power.
文摘Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the galloping mechanism, this paper proposes an online monitoring system for tracking galloping profile of power transmission lines based on wireless inertial measurement units (WIMUs). The system is composed of three modules: wireless inertial measurement nodes, monitoring base station, and remote monitoring station. After detailing the hardware system, the corresponding software which positions and displays galloping profile of the transmission line in real-time is outlined. The feasibility of the proposed on-line monitoring system is demonstrated through a series of experiments at the State Grid Key Laboratory of Power Overhead Transmission Line Galloping (Zhengzhou, China) by taking into account different vibration patterns.
文摘A new type of element which is suitable for solving the modes of thegalloping long multi-span bundle conductor structures is presented. The element is composed of allsub-conductor segments between two spacers. Based on the linearized governing differential equationsof the conductors, the mass matrix and stiffness matrix of the element in consideration of theconstrained relations imposed on the conductors by spacers are derived. The dynamic characteristicsof the galloping control devices can be directly added to the element. The modes for an actual powerline structure are computed by using the element formula and FEM procedures, where seven cases ofdifferent galloping control device allocations are considered. Compared with the measured data, themethod is shown to be reliable and effective. Analysis and discussions of the computational resultsare given. Some hints that are helpful to further investigation of galloping are also obtained .
基金supported by the National Key R&D Program of China grant number 2018YFC0809400the science and technol-ogy foundation of State Grid Corporation of China grant number5200-202016243A-0-0-00the Innovation Fund of China Electric Power Research Institute grant number NY83-19-002。
文摘Influenced by strong winds associated with a southeastward-moving Mongolian cyclone,a severe transmission line galloping occurred in Baiyin City,Gansu Province,on 14 April 2020.This caused a tripping incident of the transmission line in this region.Based on the hourly,0.5°×0.5°,ECMWF ERA5 reanalysis data,this study investigated the formation mechanisms of the Mongolian cyclone and its associated strong winds.Results from the vorticity budget indicate that the convergence-related vertical stretching and the upward transport of cyclonic vorticity governed formation of the Mongolian cyclone in this event;whereas,tilting and export of cyclonic vorticity from the central region of the cyclone mainly decelerated the cyclone’s formation.The kinetic energy(KE)budget shows that the wind associated with the Mongolian cyclone was mainly enhanced by the positive work of the pressure gradient force.Unlike some typical strong wind events in Northwest China,during this event,no significant downward momentum transportation from the upper troposphere was found.The vertical transport of KE exerted a slightly favorable effect on the KE increase around the location where the transmission line galloping trip appeared.In contrast,the horizontal transport mainly caused an export of KE from this region,which applied an overall negative effect on the wind enhancement associated with the Mongolian cyclone.
基金the National Natural Science Foundation of China (Nos. 11802091and 12172127)the Hunan Province Science and Technology Innovation Program of China(Nos. 2020JJ3019 and 2019RS2044)the Scientific Researchof Hunan Provincial Department of Education of China (No. 21A0463)
文摘The low power and narrow speed range remain bottlenecks that constrain the application of small-scale wind energy harvesting.This paper proposes a simple,lowcost,and reliable method to address these critical issues.A galloping energy harvester with the cooperative mode of vibration and collision(GEH-VC)is presented.A pair of curved boundaries attached with functional materials are introduced,which not only improve the performance of the vibration energy harvesting system,but also convert more mechanical energy into electrical energy during collision.The beam deforms and the piezoelectric energy harvester(PEH)generates electricity during the flow-induced vibration.In addition,the beam contacts and separates from the boundaries,and the triboelectric nanogenerator(TENG)generates electricity during the collision.In order to reduce the influence of the boundaries on the aerodynamic performance and the feasibility of increasing the working area of the TENG,a vertical structure is designed.When the wind speed is high,the curved boundaries maintain a stable amplitude of the vibration system and increase the frequency of the vibration system,thereby avoiding damage to the piezoelectric sheet and improving the electromechanical conversion efficiency,and the TENG works with the PEH to generate electricity.Since the boundaries can protect the PEH at high wind speeds,its stiffness can be designed to be low to start working at low wind speeds.The electromechanical coupling dynamic model is established according to the GEH-VC operating principle and is verified experimentally.The results show that the GEH-VC has a wide range of operating wind speeds,and the average power can be increased by 180%compared with the traditional galloping PEH.The GEH-VC prototype is demonstrated to power a commercial temperature sensor.This study provides a novel perspective on the design of hybrid electromechanical conversion mechanisms,that is,to combine and collaborate based on their respective characteristics.
基金Supported by National Research Council–CNPq for Grants 310595/2015-0 and 308990/2014-5
文摘This paper aims to numerically investigate the effects of parametric instability on piezoelectric energy harvesting from the transverse galloping of a square prism. A two degrees-of-freedom reduced-order model for this problem is proposed and numerically integrated. A usual quasi-steady galloping model is applied, where the transverse force coefficient is adopted as a cubic polynomial function with respect to the angle of attack. Time-histories of nondimensional prism displacement, electric voltage and power dissipated at both the dashpot and the electrical resistance are obtained as functions of the reduced velocity. Both, oscillation amplitude and electric voltage, increased with the reduced velocity for all parametric excitation conditions tested. For low values of reduced velocity, 2:1 parametric excitation enhances the electric voltage. On the other hand, for higher reduced velocities, a 1:1 parametric excitation(i.e., the same as the natural frequency) enhances both oscillation amplitude and electric voltage. It has been also found that, depending on the parametric excitation frequency, the harvested electrical power can be amplified in 70% when compared to the case under no parametric excitation.
基金supported by the Science Foundation of the State Grid Corporation of China (No. 2007-1-77)the Natural Science Foundation Project of CQ CSTC of China (No. 2006BB6149)
文摘Based on the principle of virtual work, an updated Lagrangian finite element formulation for the geometrical large deformation analysis of galloping of the iced conductor in an overhead transmission line is developed. In numerical simulation, a three-node isoparametric cable element with three translational and one torsional degrees-of-freedom at each node is used to discretize the transmission line. The nonlinear dynamic system equation is solved with the Newmark time integration method and the Newton-Raphson nonlinear iteration. Numerical examples demonstrate the efficiency of the presented method and the developed finite element program. A new possible galloping mode, which may reflect the saturation phenomenon of a nonlinear dynamic system, is discovered under the condition that the lowest order of vertical natural frequency of the transmission line is approximately two times of the horizontal one.
文摘Galloping of conductor is a major hazard to safe operation of transmission lines. This paper introduces the basic galloping stability mechanism of conductor, design method of anti-galloping and the application of anti-galloping double pendulum and integral eccentric pendulum in China. Galloping stability mechanism of conductor was established based on vertical galloping mechanism developed by Den Hartog and torsional galloping mechanism developed by O. Nigel. A design method of anti-galloping was derived and anti-galloping double pendulum and integral eccentric pendulum were developed. Applications to several transmission lines including a 500 kV transmission line of large span indicated that they have played important roles in anti-galloping.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172266,12272283)Young Talent Fund of University Association for Science and Technology in Shaanxi,China(Grant No.20200503)+2 种基金the Bilateral governmental personnel exchange project between China and Slovenia for the years 2021-2023(Grant No.12)Joint University Education Project between China and East European(Grant No.2021122)the Fundamental Research Funds for the Central Universities(Grant No.JB210703).
文摘In this paper,the response properties of galloping energy harvesters under bounded random parameter excitation are studied theoretically.The first-order approximate solution of the galloping energy harvester is derived by applying the multi-scales method.The expression for the largest Lyapunov exponent that determines the trivial solution is derived,and the corresponding simulation diagrams,including the largest Lyapunov exponent diagrams and time domain diagrams,verify our results.Then the steady-state response moments of the nontrivial solution are studied using the moment method,and the analytical expressions for the first-order and second-order moments of the voltage amplitude are obtained,respectively.The corresponding results show that wind speed enhances the steady-state response moments of the voltage amplitude.Meanwhile,the voltage output can be controlled by adjusting the cubic coefficient.To further verify the response characteristics of the galloping energy harvester,the stationary probability density functions of the displacement and velocity are obtained by the Monte-Carlo simulation method.The results show that the wind speed enhances the displacement of the bluff and the damping ratios should be reduced asmuch as possible to improve the performance.What’smore,the piezoelectric materials also impact the performance of the energy harvester.
基金Project (2007CB714706) supported by the Major State Basic Research and Development Program of ChinaProject (50678176) supported by the National Natural Science Foundation of ChinaProject (NCET-07-0866) supported by the New Century Excellent Talents in University
文摘By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibration of high-speed train and slab track system. The corresponding computer program was written by FORTRAN language. The dynamic responses of the high-speed train and slab track under cross-wind action were calculated. Meanwhile, the effects of the cross-wind on the dynamic responses of the system were also analyzed. The results show that the cross-wind has a significant influence on the lateral and vertical displacement responses of the car body, load reduction factor and overturning factor. For example, the maximum lateral displacement responses of the car body of the first trailer with and without cross-wind forces are 32.10 and 1.60 mm, respectively. The maximum vertical displacement responses of the car body of the first trailer with and without cross-wind forces are 6.60 and 3.29 mm, respectively. The maximum wheel load reduction factors of the first trailer with and without cross-wind forces are 0.43 and 0.22, respectively. The maximum overturning factors of the first trailer with and without cross-wind forces are 0.28 and 0.08, respectively. The cross-wind affects the derailment factor and lateral Sperling factor of the moving train to a certain extent. However, the lateral and vertical displacement responses of rails with the crnss-wind are almost the same as those without the cross-wind. The method presented and the corresponding computer program can be used to calculate the interaction between trains and track in cross-wind.
文摘A finite different method is developed to predict the side force on a high speedtrain in a cross-wind at low yaw anglee. The k-εturbulence model with wallfunctions is employed. the solution algorithm is based on curvilinearnonorthogonal coordinates,covariant velocity components ,and staggered gridarrangement. The convective fluxes are described by the Power tow Scheme.A highly deformed grid generated with an elliptic grid generator is used aroundthe comero of the cross-section of the train. The results obtained comparepositively with wind tunnel experinients.
基金This work was supported in part by the National Natural Science Foundation of China[Grant No.51867013].
文摘Turbulence is expected to play a relevant role in the so-called conductor gallop phenomena,namely,the high-amplitude,low-frequency oscillation of overhead power lines due to the formation of ice structures and the ensu-ing effect that wind can have on these.In this work,the galloping time history of a wire with distorted(fixed in time)shape due to the formation of ice is analyzed numerically in the frame of afluid-solid coupling method for different wind speeds and levels of turbulence.The results show that the turbulence intensity has a moderate effect on the increase of the conductor’s aerodynamic lift and drag coefficients due to ice accretion;nevertheless,the corresponding changes in the torsion coefficient are very significant and complicated.A high turbulence intensity can affect the torsion coefficient in a certain range of attack angles and increase the torsion angle of the conductor.Through comparison of the galloping phenomena for different wind velocities,it is found that the related amplitude grows significantly with an increase of the wind speed.For a relatively large wind speed,the galloping amplitude is more sensitive to the turbulence intensity.Moreover,the larger the turbulence intensity,the larger the conductor’s vertical and horizontal galloping amplitudes after icing.The torsion angle also increases with an increase in the wind speed and turbulence intensity.