期刊文献+
共找到6,514篇文章
< 1 2 250 >
每页显示 20 50 100
Composite Panels from the Combination of Rice Husk and Wood Chips with a Natural Resin Based on Tannins Reinforced with Sugar Cane Molasses Intended for Building Insulation: Physico-Mechanical and Thermal Properties
1
作者 Paul Nestor Djomou Djonga Rosellyne Serewane Deramne +2 位作者 Gustave Assoualaye Ahmat Tom Tégawendé Justin Zaida 《Journal of Materials Science and Chemical Engineering》 2024年第2期19-30,共12页
The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips an... The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings. 展开更多
关键词 composite Panels Tannins reinforced Sugar Cane Molasses Building Insulation Mechanical and Thermal Properties
下载PDF
INTERFACE DAMAGE ANALYSIS OF FIBER REINFORCED COMPOSITES WITH DUCTILE MATRIX 被引量:1
2
作者 周储伟 王鑫伟 +1 位作者 杨卫 方岱宁 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期119-123,共5页
A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensi... A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensile strength on the micro parameters of the composite. These parameters contain fiber packing pattern, fiber volume fraction, and the modulus ratio of the fiber to the matrix. The investigation reveals that though the high fiber vo lume fraction, the high fiber′s modulus and the square fiber packing can supply strong reinforcement to the composite, the interface damage is susceptible in these cases. The tensile strength of the composite is dominated by the interface strength when the interface debonding occurs. 展开更多
关键词 fiber reinforced composite micro mechanics cohesive zone model interface damage tensile strength
下载PDF
Impact Responses of the Carbon Fiber Fabric Reinforced Composites 被引量:1
3
作者 姜春兰 李明 +1 位作者 张庆明 马晓青 《Journal of Beijing Institute of Technology》 EI CAS 2000年第3期225-230,共6页
To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decay... To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decaying rule of the stress σ , strain ε , strain rate ε · and density ρ with time and space is obtained. By the theory of dynamics, the impact response characteristics of the material is analyzed and discussed. 展开更多
关键词 carbon fiber reinforced plastics (CFRP) composite IMPACT Lagrange analysis
下载PDF
Ballistic impact simulation of Kevlar-129 fiber reinforced composite material 被引量:1
4
作者 张明 原梅妮 +1 位作者 向丰华 王振兴 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第3期286-290,共5页
The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite el... The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment. 展开更多
关键词 ballistic limit finite element specific energy absorption Kevlar fiber reinforced composite material
下载PDF
Flexural behaviors of steel reinforced ECC/concrete composite beams 被引量:8
5
作者 董洛廷 潘金龙 +1 位作者 袁方 梁坚凝 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期195-202,共8页
An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increas... An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value. 展开更多
关键词 engineered cementitious composites (ECC) reinforced concrete composite beam flexural properties load carrying capacity
下载PDF
A review on machinability of carbon fiber reinforced polymer(CFRP)and glass fiber reinforced polymer(GFRP)composite materials 被引量:43
6
作者 Meltem Altin Karatas Hasan Gokkaya 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期318-326,共9页
Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in s... Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in space and aviation,automotive,maritime and manufacturing of sports equipment. Carbon fiber reinforced polymer(CFRP) and glass fiber reinforced polymer(GFRP) composite materials,among other fiber reinforced materials,have been increasingly replacing conventional materials with their excellent strength and low specific weight properties. Their manufacturability in varying combinations with customized strength properties,also their high fatigue,toughness and high temperature wear and oxidation resistance capabilities render these materials an excellent choice in engineering applications.In the present review study,a literature survey was conducted on the machinability properties and related approaches for CFRP and GFRP composite materials. As in the machining of all anisotropic and heterogeneous materials,failure mechanisms were also reported in the machining of CFRP and GFRP materials with both conventional and modern manufacturing methods and the results of these studies were obtained by use of variance analysis(ANOVA),artificial neural networks(ANN) model,fuzzy inference system(FIS),harmony search(HS) algorithm,genetic algorithm(GA),Taguchi's optimization technique,multi-criteria optimization,analytical modeling,stress analysis,finite elements method(FEM),data analysis,and linear regression technique. Failure mechanisms and surface quality is discussed with the help of optical and scanning electron microscopy,and profilometry. ANOVA,GA,FEM,etc. are used to analyze and generate predictive models. 展开更多
关键词 composite MATERIALS Fiber reinforced polymer composite MATERIALS CFRP GFRP Machining Wear Surface damage
下载PDF
Microstructure and hardness of WC-Co particle reinforced iron matrix surface composite 被引量:4
7
作者 Zhang Peng Zeng Shaolian +1 位作者 Zhang Zhiguo Li Wei 《China Foundry》 SCIE CAS 2013年第6期374-379,共6页
In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure ... In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry(EDS), electron probe microanalysis(EPMA), scanning electron microscope(SEM) and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as(Cr, W, Fe)23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA(69.5 HRC) is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material. 展开更多
关键词 PARTICLE reinforcement INFILTRATION CASTING composite material high Cr cast IRON HARDNESS
下载PDF
Strengthening mechanisms based on reinforcement distribution uniformity for particle reinforced aluminum matrix composites 被引量:13
8
作者 Gang CHEN Jia WAN +3 位作者 Ning HE Hong-ming ZHANG Fei HAN Yu-min ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第12期2395-2400,共6页
A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstru... A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstructures and compression mechanical properties.The distribution uniformity of reinforcements and cooperation relationship among dislocation mechanisms were considered in the modified mixed strengthening model by introducing a distribution uniformity factor u and a cooperation coefficient fc,respectively.The results show that the modified mixed strengthening model can accurately describe the yield strengths of Al3Ti/2024Al composites with a relative deviation less than1.2%,which is much more accurate than other strengthening models.The modified mixed model can also be used to predict the yield strength of Al3Ti/2024Al composites with different fractions of reinforcements. 展开更多
关键词 metal matrix composite strengthening model yield strength reinforcEMENT distribution uniformity
下载PDF
Preparation and Mechanical Properties of-SiC Nanoparticle Reinforced Aluminum Matrix Composite by a Multi-step Powder Metallurgy Process 被引量:5
9
作者 WANG Linong WU Hao +2 位作者 WU Xingping CHEN Minghai LIU Ning 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1059-1063,共5页
β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructur... β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructures of the as-prepared composites were observed by scanning electronic microscopy (SEM), and the mechanical properties were characterized by tensile strength measurement and Brinell hardness test. The experimental results revealed that the tensile strength of the composite with the addition of 5wt%/3-SIC nanoprtieles could be increased to 215 MPa, increasing by 110% compared with pure A1 matrix. Comparative experiments reflected that theβ-SIC nanoprticles showed significant reinforcement effect than traditional a-SiC micro-sized particles. The preparation process and sintering procedure were investigated to develop a cost effective preparation strategy to fabricate nano-SiCp/A1 composite. 展开更多
关键词 Β-SIC NANOPARTICLES particulate reinforced Al matrix composite powder metallurgy
下载PDF
Microstructure and mechanical properties of a hot-extruded Al-based composite reinforced with core–shell-structured Ti/Al3Ti 被引量:3
10
作者 Li Zhang Bao-lin Wu Yu-lin Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第12期1431-1437,共7页
An Al-based composite reinforced with core–shell-structured Ti/Al_3Ti was fabricated through a powder metallurgy route followed by hot extrusion and was found to exhibit promising mechanical properties. The ultimate ... An Al-based composite reinforced with core–shell-structured Ti/Al_3Ti was fabricated through a powder metallurgy route followed by hot extrusion and was found to exhibit promising mechanical properties. The ultimate tensile strength and elongation of the composite sintered at 620°C for 5 h and extruded at a mass ratio of 12.75:1 reached 304 MPa and 14%, respectively, and its compressive deformation reached 60%. The promising mechanical properties are due to the core–shell-structured reinforcement, which is mainly composed of Al_3Ti and Ti and is bonded strongly with the Al matrix, and to the reduced crack sensitivity of Al_3Ti. The refined grains after hot extrusion also contribute to the mechanical properties of this composite. The mechanical properties might be further improved through regulating the relative thickness of Al–Ti intermetallics and Ti metal layers by adjusting the sintering time and the subsequent extrusion process. 展开更多
关键词 microstructure aluminum-based composites Ti/Al3Ti reinforcEMENTS mechanical properties
下载PDF
The properties of flax fiber reinforced wood flour/high density polyethylene composites 被引量:3
11
作者 Jingfa Zhang Haigang Wang +1 位作者 Rongxian Ou Qingwen Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第2期524-531,共8页
Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare ... Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare FF reinforced WF/PE composites(FF/WF/PE).Mechanical testing,dynamic mechanical analysis,scanning electron microscopy(SEM),creep measurement and Torque rheology were used to characterize the resulting composites.The results indicate that the mechanical performance of the composites could be remarkably improved by adding a limited amount of FF.The flexural strength and modulus increased by 14.6 and 51.4%,respectively(FF content of 9 wt%),while the unnotched impact strength could be increased by 26.5%(FF content of12 wt%).The creep resistance and toughness of thecomposite was markedly improved without changing the plastic content of the composite material. 展开更多
关键词 Wood-plastic composites Flax fiber reinforcEMENT PROCESSING Mechanical property Creep resistance
下载PDF
Working mechanism of two-direction reinforced composite foundation 被引量:10
12
作者 张玲 赵明华 贺炜 《Journal of Central South University of Technology》 EI 2007年第4期589-594,共6页
Based on the discussion about working mechanism of horizontal reinforcement and that of vertical reinforcement,respectively,the working mechanism of two-direction reinforced composite foundation was studied.The enhanc... Based on the discussion about working mechanism of horizontal reinforcement and that of vertical reinforcement,respectively,the working mechanism of two-direction reinforced composite foundation was studied.The enhancing effect of horizontal reinforcement on vertical reinforced composite foundation was analyzed.A simplified calculation method for such two-direction reinforced working system was presented.A model experiment was carried out to validate the proposed method.In the experiment,geocell reinforcement worked as the horizontal reinforcement,while gravel pile composite foundation worked as the vertical reinforcement.The results show that the calculated curve is close to the measured one.The installation of geosynthetic reinforcement can increase the bearing capacity of composite foundation by nearly 68% at normal foundation settlement,which suggests that the enhancing effect by geosynthetic reinforcement should be taken into account in current design/analysis methods. 展开更多
关键词 composite foundation two-direction reinforcement working mechanism bearing capacity
下载PDF
Effects of characteristic inhomogeneity of bamboo culm nodes on mechanical properties of bamboo fiber reinforced composite 被引量:5
13
作者 Jinqiu Qi Jiulong Xie +1 位作者 Wenji Yu Simin Chen 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第4期1057-1060,共4页
Dendrocalamus farinosus and Phyllostachys heterocycla bamboo logs were subjected to a novel treat- ment process for the preparation of bamboo fiber mats (BFMs), and the obtained BFM were used to fabricate bamboo fib... Dendrocalamus farinosus and Phyllostachys heterocycla bamboo logs were subjected to a novel treat- ment process for the preparation of bamboo fiber mats (BFMs), and the obtained BFM were used to fabricate bamboo fiber reinforced composite (BFRC). We studied the mechanical properties of the BFRCs manufactured from the mats with and without bamboo nodes. The pres- ence of nodes in BFM greatly reduced tensile strength, compressive strength, modulus of elasticity, and modulus of rupture of the BFRCs, while the BFRCs fabricated from BFMs with nodes possessed higher horizontal shear strength. Therefore, the nodes in bamboo culms were an important factor in the uniform distribution of mechanical properties, and BFMs should be homogeneously arranged to reduce the impact of nodes on the mechanical strengths of BFRCs. 展开更多
关键词 Bamboo fiber reinforced composite - Culmnode Mechanical properties
下载PDF
Mechanical Properties of Mo Fiber-reinforced Resin Mineral Composites with Different Mass Ratio of Resin and Hardener 被引量:3
14
作者 张超 张进生 +1 位作者 REN Xiuhua ZHANG Jianhua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期383-390,共8页
Mo fibers were added to RMC with different mass ratios of resin and hardener to improve its mechanical properties. The influences of fiber surface state and hardener content on interface bonding strength and mechanica... Mo fibers were added to RMC with different mass ratios of resin and hardener to improve its mechanical properties. The influences of fiber surface state and hardener content on interface bonding strength and mechanical properties of RMC were studied, respectively. Furthermore, strain values of typical measuring points on samples of Mo fiber reinforced RMC(MFRRMC) under different loads were obtained by experiments and finite element analysis. The experimental results prove that scrap Mo fibers can improve interface bonding strength and mechanical properties of RMC better than new smooth Mo fibers because of the discharge pits randomly distributed on the surface of scrap fibers. With the decrease of hardener content, not only interface bonding strength between fiber and matrix, but also compression and flexural strength of MFRRMC increase firstly and then decrease. The properties are best while the mass ratio of resin and hardener reaches 4:1. It is indicated that finite element calculation data basically agree with experimental data by comparison of strain values on typical measuring points, which can provide an important intuitive reference for successive study on other mechanical properties of MFRRMC, validating the correctness of simulation method as well. 展开更多
关键词 MO FIBER RESIN mineral composite(RMC) reinforcing effect compression STRENGTH flexural STRENGTH bonding STRENGTH
下载PDF
Flexural behavior of reinforced concrete beams with high performance fiber reinforced cementitious composites 被引量:5
15
作者 SIVA Chidambaram R PANKAJ Agarwal 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2609-2622,共14页
This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in t... This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in the hinge portion.Beam specimens with moderate confinement were used in the study and tested under monotonic loading.Seven diverse types of FRCC including hybrid composites using fibers in different profiles and in different volumes are employed in this study.Companion specimens such as cylindrical specimens and prism specimens are also used to study the physical properties of composites employed.The moment?curvature,stiffness behavior,ductility,crack pattern and modified flexural damage ratio are the main factors considered in this study to observe the efficacy of the employed hybrid composites.The experimental outputs demonstrate the improved post yield behavior with less rate of stiffness degradation and better damage tolerance capacity than conventional technique. 展开更多
关键词 reinforced concrete beams fiber reinforced composites flexural behavior flexural damage ratio
下载PDF
PREDICTION OF MECHANICAL PROPERTY OF WHISKER REINFORCED METAL MATRIX COMPOSITE: PART-II. VERIFICATION & APPLICATION 被引量:3
16
作者 刘晓宇 刘秋云 梁乃刚 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第3期188-192,共5页
The present paper continues the discussion in Part I. Model and Formulation. Based on the theory proposed in Part I, the formulae predicting stiffness moduli of the composites in some typical cases of whisker orie... The present paper continues the discussion in Part I. Model and Formulation. Based on the theory proposed in Part I, the formulae predicting stiffness moduli of the composites in some typical cases of whisker orientations and loading conditions are derived and compared with theoretical representatives in literatures, experimental measurement and commonly used empirical formulae. It seems that (1) with whisker reinforcing and matrix hardening considered, the present prediction is in well agreement with the experimental measurement; (2) the present theory can predict accurate moduli with the proper pre calculated parameters; (3) the upper bound and lower bound of the present theory are just the predictions of equal strain theory and equal stress theory; (4) the present theory provides a physical explanation and theoretical base for the present commonly used empirical formulae. Compared with the microscopic mechanical theories, the present theory is competent for modulus prediction of practical engineering composite in accuracy and simplicity. [WT5”HZ] 展开更多
关键词 whisker/short fiber reinforced composite modulus prediction ANISOTROPY
下载PDF
Determination of Water Diffusion Coefficients and Dynamics in Adhesive/Carbon Fiber Reinforced Epoxy Resin Composite Joints 被引量:3
17
作者 WANG Chao WANG zhi +1 位作者 WANG Jing SU Tao 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第4期474-478,共5页
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan... To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment. 展开更多
关键词 Diffusion coefficient DYNAMICS Energy dispersive X-ray spectroscopy Elemental analysis Adhesive/ carbon fiber reinforced epoxy resin composites joint
下载PDF
Diffusion Bonding of Silicon Carbide Particulate Reinforced 2024 Al Composites 被引量:6
18
作者 Mingjiu ZHAO+, Liqing CHEN and Jing BI (Metal Matrix Composites Department, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China) Gang ZHANG (Shenyang Institute of Technology, Shenyang 110015, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第5期471-474,共4页
A study has been made on diffusion bonding of SiCp/2024Ai composites by means of pure Al interlayer. In the condition of TB=843 K, PB=16 MPa, tB= 60 min, the diffusion bonded joint, with a shear strength of 235 MPa, w... A study has been made on diffusion bonding of SiCp/2024Ai composites by means of pure Al interlayer. In the condition of TB=843 K, PB=16 MPa, tB= 60 min, the diffusion bonded joint, with a shear strength of 235 MPa, was obtained when a 15 μm thick interlayer was used. The results of the shear testing and SEM indicate that fracture of the joint presented characteristics of ductile rupture. 展开更多
关键词 Diffusion Bonding of Silicon Carbide Particulate reinforced 2024 Al composites SICP AL
下载PDF
STRAIN REGULARITY IN REINFORCERS OF SHORT-FIBER/ WHISKER REINFORCED COMPOSITE AND ITS APPLICATION 被引量:2
19
作者 王迺鹏 刘秋云 刘晓宇 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第4期204-210,共7页
Based on the study of strain distribution in short-fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter λ is defined as the ratio of the root-mean-square strain of reinforcers to t... Based on the study of strain distribution in short-fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter λ is defined as the ratio of the root-mean-square strain of reinforcers to the macro-linear strain along the same direction. Quantitative relation between λ and microstructure parameters of the composite is obtained. As an example of applying and verifying λ, the stress-strain curve of [AlBO]w/Al composite under tensile loading is predicted and favorably compared with experiments. By using λ, the stiffness modulus of the composite with arbitrary reinforcer orientation under any loading condition is predicted from the microstructure parameters of material. 展开更多
关键词 short-fiber/whisker reinforced composite strain distribution stiffness prediction
下载PDF
Flexural behavior of steel reinforced engineered cementitious composite beams 被引量:4
20
作者 Dong Bingqing Pan Jinlong Lu Cong 《Journal of Southeast University(English Edition)》 EI CAS 2019年第1期72-82,共11页
In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretica... In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretical analyses of the SRECC beam including crack propagation and stress-strain distributions along the depth of the composite beam in different loading stages are conducted. A theoretical model and simplified design method are proposed to calculate the load carrying capacity. Based on the proposed theoretical model, the relationship between the moment and corresponding curvature is derived. The theoretical results are verified with the finite element analysis. Finally, an extensive parametric study is performed to study the effect of the matrix type, steel shape ratio, reinforced bar ratio, ECC compressive strength and ECC tensile ductility on the mechanical behavior of SRECC beams. The results show that substitution concrete with ECC can effectively improve the bearing capacity and ductility of composite beams. The steel shape and longitudinal reinforcement can enhance the loading carrying capacity, while the ductility decreases with the increase of steel shape ratio. ECC compressive strength has significant effects on both load carrying capacity and ductility, and changing the ultimate strain of ECC results in a very limited variation in the mechanical behavior of SRECC beams. 展开更多
关键词 engineered cementitious composite(ECC) steel reinforced ECC(SRECC) composite beam flexural behavior ultimate load-carrying capacity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部