Two commercial crosslinkable polyethylene insulation cable granules, designed for 110 and 35 kV voltage insulation, with similar crosslinking temperature but different melting temperature, were chosen as experimental ...Two commercial crosslinkable polyethylene insulation cable granules, designed for 110 and 35 kV voltage insulation, with similar crosslinking temperature but different melting temperature, were chosen as experimental samples for examining their linear dynamic responses during cross-linking. It has been found that the gel contents of cable compounds for 110 and 35 kV insulation are almost the same after they have been cross-linked at the same temperature, pressure and time. And the sample melts show the similar dependence of the dynamic storage modulus, G; on strain. On the other hand, the dynamic temperature ramp test and the dynamic time sweep test indicate that the samples exhibit different dynamic viscoelastic responses during their crosslinking. An expression for describing their erosslinking process was proposed via probing rheokinetics of crosslinking for the two samples.展开更多
The degradation of crosslinked polyethylene (XLPE) cable insulation during service, such as thermo-oxidation and water treeing may lead to a premature electrical breakdown of the XLPE insulation cables. Therefore, it ...The degradation of crosslinked polyethylene (XLPE) cable insulation during service, such as thermo-oxidation and water treeing may lead to a premature electrical breakdown of the XLPE insulation cables. Therefore, it is necessary to optimize the period of replacement to evenly distribute the replacement cost by ascertaining the deterioration degree. Estimation of the aging degree is at present the most important task for diagnosis of the residual lifetime of the power cable insulation. This paper presents a study on the changes in the dielectric properties of the thermally aged XLPE cables in the frequency range from 0.07~10 MHz. Based on electrical and physicochemical characterization, some new "dactylograms" for the thermally aged XLPE cable insulation have been proposed.展开更多
针对110k V XLPE电缆绝缘交联时过氧化二异丙苯(DCP)分解产生的副产物对电缆的性能会产生影响的问题,对XLPE电缆进行脱气处理,对脱气前后的电缆绝缘进行红外光谱分析,并对脱气前后电缆绝缘的介电性能和力学性能进行比较分析。结果表明:...针对110k V XLPE电缆绝缘交联时过氧化二异丙苯(DCP)分解产生的副产物对电缆的性能会产生影响的问题,对XLPE电缆进行脱气处理,对脱气前后的电缆绝缘进行红外光谱分析,并对脱气前后电缆绝缘的介电性能和力学性能进行比较分析。结果表明:交联产生的两种挥发性交联副产物α-甲基苯乙烯和苯乙酮的含量在脱气过程中显著降低,XLPE绝缘中的极性基团数量减少,低频电导率降低,从而使XLPE绝缘的相对介电常数和低频介质损耗因数下降,拉伸强度和断裂伸长率提高。展开更多
基金Supported by the National Key Technologies Research and Development Program of China During the 11th Five-Year Plan Period(No.2007BAE19B01)the Industrial Research Projects of the Science and Technology Plan of Ningbo City,China (No.2007B10033)
文摘Two commercial crosslinkable polyethylene insulation cable granules, designed for 110 and 35 kV voltage insulation, with similar crosslinking temperature but different melting temperature, were chosen as experimental samples for examining their linear dynamic responses during cross-linking. It has been found that the gel contents of cable compounds for 110 and 35 kV insulation are almost the same after they have been cross-linked at the same temperature, pressure and time. And the sample melts show the similar dependence of the dynamic storage modulus, G; on strain. On the other hand, the dynamic temperature ramp test and the dynamic time sweep test indicate that the samples exhibit different dynamic viscoelastic responses during their crosslinking. An expression for describing their erosslinking process was proposed via probing rheokinetics of crosslinking for the two samples.
基金Major Research Project of Shanghai City(No. 045211024)
文摘The degradation of crosslinked polyethylene (XLPE) cable insulation during service, such as thermo-oxidation and water treeing may lead to a premature electrical breakdown of the XLPE insulation cables. Therefore, it is necessary to optimize the period of replacement to evenly distribute the replacement cost by ascertaining the deterioration degree. Estimation of the aging degree is at present the most important task for diagnosis of the residual lifetime of the power cable insulation. This paper presents a study on the changes in the dielectric properties of the thermally aged XLPE cables in the frequency range from 0.07~10 MHz. Based on electrical and physicochemical characterization, some new "dactylograms" for the thermally aged XLPE cable insulation have been proposed.
文摘针对110k V XLPE电缆绝缘交联时过氧化二异丙苯(DCP)分解产生的副产物对电缆的性能会产生影响的问题,对XLPE电缆进行脱气处理,对脱气前后的电缆绝缘进行红外光谱分析,并对脱气前后电缆绝缘的介电性能和力学性能进行比较分析。结果表明:交联产生的两种挥发性交联副产物α-甲基苯乙烯和苯乙酮的含量在脱气过程中显著降低,XLPE绝缘中的极性基团数量减少,低频电导率降低,从而使XLPE绝缘的相对介电常数和低频介质损耗因数下降,拉伸强度和断裂伸长率提高。