We develop an interconnect crosstalk estimation model on the assumption of linearity for CMOS device. First, we analyze the terminal response of RC model on the worst condition from theS field to the time domain. The ...We develop an interconnect crosstalk estimation model on the assumption of linearity for CMOS device. First, we analyze the terminal response of RC model on the worst condition from theS field to the time domain. The exact 3 order coefficients inS field are obtained due to the interconnect tree model. Based on this, a crosstalk peak estimation formula is presented. Unlike other crosstalk equations in the literature, this formula is only used coupled capacitance and grand capacitance as parameter. Experimental results show that, compared with the SPICE results, the estimation formulae are simple and accurate. So the model is expected to be used in such fields as layout-driven logic and high level synthesis, performance-driven floorplanning and interconnect planning.展开更多
In this paper, we study the interconnect buffer and wiresizing optimization problem under a distributed RLC model to optimize not just area and delay, but also crosstalk for RLC circuit with non-monotone signal respon...In this paper, we study the interconnect buffer and wiresizing optimization problem under a distributed RLC model to optimize not just area and delay, but also crosstalk for RLC circuit with non-monotone signal response. We present a new multiobjective genetic algorithm(MOGA) which uses a single objective sorting(SOS) method for constructing the non-dominated set to solve this multi-objective interconnect optimization problem. The MOGA/SOS optimal algorithm provides a smooth trade-off among signal delay, wave form, and routing area. Furthermore, we use a new method to calculate the lower bound of crosstalk. Extensive experimental results show that our algorithm is scalable with problem size. Furthermore, compared to the solution based on an Elmore delay model, our solution reduces the total routing area by up to 30%, the delay to the critical sinks by up to 25%, while further improving crosstalk up to 25.73% on average.展开更多
Major pulmonary disorders may occur after brain injuries as ventilator-associated pneumonia, acute respiratory distress syndrome or neurogenic pulmonary edema. They are key points for the management of brain-injured p...Major pulmonary disorders may occur after brain injuries as ventilator-associated pneumonia, acute respiratory distress syndrome or neurogenic pulmonary edema. They are key points for the management of brain-injured patients because respiratory failure and mechanical ventilation seem to be a risk factor for increased mortality, poor neurological outcome and longer intensive care unit or hospital length of stay. Brain and lung strongly interact via complex pathways from the brain to the lung but also from the lung to the brain. Several hypotheses have been proposed with a particular interest for the recently described "double hit" model. Ventilator setting in brain-injured patients with lung injuries has been poorly studied and intensivists are often fearful to use some parts of protective ventilation in patients with brain injury. This review aims to describe the epidemiology and pathophysiology of lung injuries in brain-injured patients, but also the impact of different modalities of mechanical ventilation on the brain in the context of acute brain injury.展开更多
基金SupportedbytheNationalHighTechnologyResearchandDevelopmentProgramofChina (863Plan) (863 SOC Y 3 3 2 )
文摘We develop an interconnect crosstalk estimation model on the assumption of linearity for CMOS device. First, we analyze the terminal response of RC model on the worst condition from theS field to the time domain. The exact 3 order coefficients inS field are obtained due to the interconnect tree model. Based on this, a crosstalk peak estimation formula is presented. Unlike other crosstalk equations in the literature, this formula is only used coupled capacitance and grand capacitance as parameter. Experimental results show that, compared with the SPICE results, the estimation formulae are simple and accurate. So the model is expected to be used in such fields as layout-driven logic and high level synthesis, performance-driven floorplanning and interconnect planning.
基金Supported by the National Natural Science Foundation of China (90307017)
文摘In this paper, we study the interconnect buffer and wiresizing optimization problem under a distributed RLC model to optimize not just area and delay, but also crosstalk for RLC circuit with non-monotone signal response. We present a new multiobjective genetic algorithm(MOGA) which uses a single objective sorting(SOS) method for constructing the non-dominated set to solve this multi-objective interconnect optimization problem. The MOGA/SOS optimal algorithm provides a smooth trade-off among signal delay, wave form, and routing area. Furthermore, we use a new method to calculate the lower bound of crosstalk. Extensive experimental results show that our algorithm is scalable with problem size. Furthermore, compared to the solution based on an Elmore delay model, our solution reduces the total routing area by up to 30%, the delay to the critical sinks by up to 25%, while further improving crosstalk up to 25.73% on average.
文摘Major pulmonary disorders may occur after brain injuries as ventilator-associated pneumonia, acute respiratory distress syndrome or neurogenic pulmonary edema. They are key points for the management of brain-injured patients because respiratory failure and mechanical ventilation seem to be a risk factor for increased mortality, poor neurological outcome and longer intensive care unit or hospital length of stay. Brain and lung strongly interact via complex pathways from the brain to the lung but also from the lung to the brain. Several hypotheses have been proposed with a particular interest for the recently described "double hit" model. Ventilator setting in brain-injured patients with lung injuries has been poorly studied and intensivists are often fearful to use some parts of protective ventilation in patients with brain injury. This review aims to describe the epidemiology and pathophysiology of lung injuries in brain-injured patients, but also the impact of different modalities of mechanical ventilation on the brain in the context of acute brain injury.