Carbon emissions from forest fires are considered an important factor of ecosystem carbon balance and global climate change. Carbon emissions from Japanese red pine stands (Pinus densiflora S. et Z.) burned by crown...Carbon emissions from forest fires are considered an important factor of ecosystem carbon balance and global climate change. Carbon emissions from Japanese red pine stands (Pinus densiflora S. et Z.) burned by crown fire were estimated at Mt. Palgong in Daegu Metropolitan City, and crown fuel characteristics, including crown bulk density, crown base height, and fuel moisture content of Japanese red pine, were analyzed. Total biomass combusted was calculated by subtracting the biomass of burned stands from that of unburned stands exhibiting similar stand structures and site environments. Ten trees in the unburned area and five trees in the burned area were cut by using direct harvesting techniques to estimate crown layer biomass. All biomass sampled was oven-dried and weighed. The dry weight ratios of stems, branches, and needles were 7o%, 21%, and 9%, respectively. The available fuel load susceptible to combustion during the crown fire spread was equivalent to 55% of the crown layer biomass. The crown bulk density was 0.24 kg/m3 on average. The estimated amount of CO2 was 23,454 kg CO2/ha for the crown layer. These results will be useful for calculating the amount of CO2 emitted from forest fires and for developing a forest carbon model in P. densiflora forests.展开更多
Crown fire damage is a mixture of three principal fire-related components:charred material,scorched foliage,and unaltered green canopy.This study estimated the abundance of these physical alterations in two immediate ...Crown fire damage is a mixture of three principal fire-related components:charred material,scorched foliage,and unaltered green canopy.This study estimated the abundance of these physical alterations in two immediate post-fire Mediterranean forest contexts(Portugal and Italy)by applying linear spectral mixture analysis(LSMA)on Sentinel-2 imagery.The tree crowns fire damage was subsequently mapped,integrating fractional abundance information in a random forest(RF)algorithm,comparing the accuracy resulting from the adoption of generic or image spectral libraries as the primary investigative goal.Although image-derived endmembers resulted in more effectiveness in terms of fire-related components abundance quantification(LMSAderived RMSE<0.1),the F-scores always were≥90%whether generic endmembers or image endmembers derived information was employed.The environmental heterogeneity of the two study areas affected the fire severity gradients,with a prevalence of the charred(PT)(45–46%)and green class(IT)(44–53%).Post-fire temporal monitoring was initialized by applying the proposed strategies,and the preliminary results showed a positive recovery trend in forest vegetation from the first year following the fire event,with a reduced charcoal predominance and an increasing proportion of green components.展开更多
This paper introduces a new method of calculating crown projection area(CPA),the area of level ground covered by a vertical projection of a tree crown from measured crown radii through numerical interpolation and inte...This paper introduces a new method of calculating crown projection area(CPA),the area of level ground covered by a vertical projection of a tree crown from measured crown radii through numerical interpolation and integration.This novel method and other four existing methods of calculating CPA were compared using detailed crown radius measurements from 30 tall trees of Eucalyptus pilularis variable in crown size,shape,and asymmetry.The four existing methods included the polygonal approach and three ways of calculating CPA as the area of a circle using the arithmetic,geometric and quadratic mean radius.Comparisons were made across a sequence of eight non-consecutive numbers(from 2 to 16)of measured crown radii for each tree over the range of crown asymmetry of the 30 trees through generalized linear models and multiple comparisons of means.The sequence covered the range of the number of crown radii measured for calculating the CPA of a tree in the literature.A crown asymmetry index within the unit interval was calculated for each tree to serve as a normative measure.With a slight overestimation of 2.2%on average and an overall mean error size of 7.9%across the numbers of crown radii that were compared,our new method was the least biased and most accurate.Calculating CPA as a circle using the quadratic mean crown radius was the second best,which had an average overestimation of 4.5%and overall mean error size of 8.8%.These two methods remained by and large unbiased as crown asymmetry increased,while the other three methods showed larger bias of underestimation.For the conventional method of using the arithmetic mean crown radius to calculate CPA as a circle,bias correction factors were developed as a function of crown asymmetry index to delineate the increasing magnitude of bias associated with greater degrees of crown asymmetry.This study reveals and demonstrates such relationships between the accuracy of CPA calculations and crown asymmetry and will help increase awareness among researchers and practitioners on the existence of bias in their CPA calculations and for the need to use an unbiased method in the future.Our new method is recommended for calculating CPA where at least four crown radius measurements per tree are available because that is the minimum number required for its use.展开更多
Background In Central Europe,forests are increasingly affected by various disturbances,resulting in an increasing gap formation in the canopy.In order to support goal-oriented management,more knowledge is required abo...Background In Central Europe,forests are increasingly affected by various disturbances,resulting in an increasing gap formation in the canopy.In order to support goal-oriented management,more knowledge is required about the acclimation of the crown and its effects on the basal area growth of trees at the edge of a gap.Methods This work compared trees'growth and crown structure at the edge of a transient gap,with a gap size of more than 80m^(2),with trees in the stand that were at least 30m away from the gap.A total of 249 European beeches(Fagus sylvatica L.),Norway spruces(Picea abies L.Karst),Scots pines(Pinus sylvestris L.),oaks(Quercus spp.;Quercus petraea(Matt.)Liebl.,Quercus robur L.),and silver firs(Abies alba Mill.)were examined on long-term experimental plots in southern Germany.Various crown measures were developed and calculated using high-resolution terrestrial laser scanning(TLiDAR)to capture the three-dimensional crown structures.Growth responses to edge conditions were measured based on tree rings.Using linear mixed models,we predict the basal area increment of edge trees relative to trees in the stand under wet and dry soil moisture conditions after the gap formation.Results We identified i)species-specific acclimation of the crown of edge trees after the gap formation,ii)under wet soil moisture conditions a growth increase of 25%–45%for beech,pine,and oak edge trees and growth losses of 5%–60%for spruce and fir and iii)coniferous tree species benefited from the edge position regarding their basal area increment under dry soil moisture conditions and deciduous tree species grew regardless of the soil moisture conditions at the edge of a gap.Conclusion Gaps have a species-specific effect on the habitus and growth of edge trees and can have both positive and negative impacts on silviculture.展开更多
In the domain of perovskite solar cells(PSCs),the imperative to reconcile impressive photovoltaic performance with lead-related issue and environmental stability has driven innovative solutions.This study pioneers an ...In the domain of perovskite solar cells(PSCs),the imperative to reconcile impressive photovoltaic performance with lead-related issue and environmental stability has driven innovative solutions.This study pioneers an approach that not only rectifies lead leakage but also places paramount importance on the attainment of rigorous interfacial passivation.Crown ethers,notably benzo-18-crown-6-ether(B18C6),were strategically integrated at the perovskite-hole transport material interface.Crown ethers exhibit a dual role:efficiently sequestering and immobilizing Pb^(2+)ions through host-guest complexation and simultaneously establishing a robust interfacial passivation layer.Selected crown ether candidates,guided by density functional theory(DFT)calculations,demonstrated proficiency in binding Pb2+ions and optimizing interfacial energetics.Photovoltaic devices incorporating these materials achieved exceptional power conversion efficiency(PCE),notably 21.7%for B18C6,underscoring their efficacy in lead binding and interfacial passivation.Analytical techniques,including time-of-flight secondary ion mass spectrometry(ToF-SIMS),ultraviolet photoelectron spectroscopy(UPS),time-resolved photoluminescence(TRPL),and transient absorption spectroscopy(TAS),unequivocally affirmed Pb^(2+)ion capture and suppression of non-radiative recombination.Notably,these PSCs maintained efficiency even after enduring 300 h of exposure to 85%relative humidity.This research underscores the transformative potential of crown ethers,simultaneously addressing lead binding and stringent interfacial passivation for sustainable PSCs poised to commercialize and advance renewable energy applications.展开更多
Crown development is closely related to the biomass and growth rate of the tree and its width(CW)is an important covariable in growth and yield models and in forest management.To date,various CW models have been propo...Crown development is closely related to the biomass and growth rate of the tree and its width(CW)is an important covariable in growth and yield models and in forest management.To date,various CW models have been proposed.However,limited studies have explicitly focused on additive and inherent correlation of crown components and total CW as well as the influence of competition on crown radius from the corresponding direction.In this study,two model systems were used,i.e.,aggregation method system(AMS)and disaggregation method system(DMS),to develop crown width additive model systems.For calculating spatially explicit competition index(CI),four neighbor tree selection methods were evaluated.CI was decomposed into four cardinal directions and added into the model systems.Results show that the power model form was more proper for our data to fit CW growth.For each crown radius and total CW,height to the diameter at breast height(HDR)and basal area of trees larger than the subject tree(BAL)significantly contributed to the increase of prediction accuracy.The 3-m fixed radius was optimal among the four neighborhoods selection ways.After adding decomposed competition Hegyi index into model systems AMS and DMS,the prediction accuracy improved.Of the model systems evaluated,AMS based on decomposed CI provided the best performance as well as the inherent correlation and additivity properties.Our study highlighted the importance of decomposed CI in tree CW modelling for additive model systems.This study focused on methodology and could be applied to other species or stands.展开更多
Crown width(CW)is one of the most important tree metrics,but obtaining CW data is laborious and timeconsuming,particularly in natural forests.The Deep Learning(DL)algorithm has been proposed as an alternative to tradi...Crown width(CW)is one of the most important tree metrics,but obtaining CW data is laborious and timeconsuming,particularly in natural forests.The Deep Learning(DL)algorithm has been proposed as an alternative to traditional regression,but its performance in predicting CW in natural mixed forests is unclear.The aims of this study were to develop DL models for predicting tree CW of natural spruce-fir-broadleaf mixed forests in northeastern China,to analyse the contribution of tree size,tree species,site quality,stand structure,and competition to tree CW prediction,and to compare DL models with nonlinear mixed effects(NLME)models for their reliability.An amount of total 10,086 individual trees in 192 subplots were employed in this study.The results indicated that all deep neural network(DNN)models were free of overfitting and statistically stable within 10-fold cross-validation,and the best DNN model could explain 69%of the CW variation with no significant heteroskedasticity.In addition to diameter at breast height,stand structure,tree species,and competition showed significant effects on CW.The NLME model(R^(2)=0.63)outperformed the DNN model(R^(2)=0.54)in predicting CW when the six input variables were consistent,but the results were the opposite when the DNN model(R^(2)=0.69)included all 22 input variables.These results demonstrated the great potential of DL in tree CW prediction.展开更多
Fusarium crown rot(FCR) is a soilborne disease causing severe yield losses in many wheat-growing areas of the world. Diseased plants show browning and necrosis of roots and stems causing white heads at maturity. Littl...Fusarium crown rot(FCR) is a soilborne disease causing severe yield losses in many wheat-growing areas of the world. Diseased plants show browning and necrosis of roots and stems causing white heads at maturity. Little is known about the molecular processes employed by wheat roots to respond to the disease. We characterized morphological, transcriptional and hormonal changes in wheat seedling roots following challenge with Fusarium pseudograminearum(Fp), the main pathogen of FCR. The pathogen inhibited root development to various extents depending on plants' resistance level. Many genes responsive to FCR infection in wheat roots were enriched in plant hormone pathways. The contents of compounds involved in biosynthesis and metabolism of jasmonic acid, salicylic acid, cytokinin and auxin were drastically changed in roots at five days post-inoculation. Presoaking seeds in methyl jasmonate for 24 h promoted FCR resistance, whereas presoaking with cytokinin 6-benzylaminopurine made plants more susceptible. Overexpression of TaOPR3, a gene involved in jasmonic acid biosynthesis, enhanced plant resistance as well as root and shoot growth during infection.展开更多
Rubble mound breakwaters with a crown wall are a common coastal engineering structure.The wave force on crown walls is an important parameter for the practice engineering design.Particularly,the wave force on crown wa...Rubble mound breakwaters with a crown wall are a common coastal engineering structure.The wave force on crown walls is an important parameter for the practice engineering design.Particularly,the wave force on crown walls under intermediate depths has been studied through physical model tests and numerical simulations.In this study,a three-dimensional numerical wave flume was developed to investigate monochromatic wave interactions in a rubble mound breakwater with a crown wall.Armor blocks were modeled in detail.The Navier-Stokes equations for two-phase incompressible flows,combined with shear stress transport k-ωturbulence model and volume of fluid method for tracking the free surface,were solved.A set of laboratory experiments were performed to validate the adopted model.Subsequently,a series of numerical simulations were implemented to examine the impacts of different hydrodynamic parameters(including wave height,incident wave period,and water depth)and the berm width on the wave force of the crown wall.Finally,a comparison of the experimental results and Martin method shows that the latter method is not suitable for this experimental scope.New empirical formulas are proposed to predict the wave force on crown walls under intermediate depth.The results can provide a basis for the design of crown wall of rubble mound breakwaters at intermediate depths.展开更多
Electrosynthesis of ammonia from the reduction of nitrogen is still confronted with the limited supply of gas reactant in dynamics as well as high activation barrier in thermodynamics.Unfortunately,despite tremendous ...Electrosynthesis of ammonia from the reduction of nitrogen is still confronted with the limited supply of gas reactant in dynamics as well as high activation barrier in thermodynamics.Unfortunately,despite tremendous efforts devoted to electrocatalysts themselves,they still fail to tackle the above two challenges simultaneously.Herein,we employ a heterogeneous catalyst adlayer-composed of crown ethers associated with Li^(+)ions-to achieve the dual promotion of dynamics and thermodynamics for ambient ammonia synthesis.Dynamically,the bound Li^(+)ions interact with the strong quadrupole moment of nitrogen,and trigger considerable reactant flux toward the catalyst.Thermodynamically,Li^(+)associated with the oxygen of crown ether achieves a higher density of states at the Fermi level for the catalyst,enabling effortless electron transfer from the catalysts to nitrogen and thus greatly reducing the activation barrier.As expected,the proof-of-concept system achieves an ammonia yield rate of 168.5μg h^(-1)mg^(-1)and a Faradaic efficiency of 75.3%at-0.3 V vs.RHE.This system-level approach opens up pathways for tackling the two key challenges that have limited the field of ammonia synthesis.展开更多
Bis(15-crown-5)-stilbenes containing crown ether parts have been widely used in a variety of chemical applications,such as cation detectors,because of their ability to selectively bind to alkali metal cations,Bis(15-c...Bis(15-crown-5)-stilbenes containing crown ether parts have been widely used in a variety of chemical applications,such as cation detectors,because of their ability to selectively bind to alkali metal cations,Bis(15-crown-5)-stilbenes and its derivatives with complexation of one-or two-alkali metal cation(Li^(+),Na^(+)and K^(+))have been theoretically investigat-ed by quantum chemistry methods.The coordination of alkali cations results in partial shrinkage of crown ethers,which directly affected natural distribution analysis charges and molecular orbital energy levels.The number of alkali metal ions has significant effects on absorption spectra and mean second hyperpolarizability.When one alkali metal ion was added to the anticonformer of bis(15-crown-5)-stilbene,the absorption spectra were obvious-ly redshifted and the mean second hyperpolarizability values were slightly increased;while two alkali metal ions were added to bis(15-crown-5)-stilbene,the absorption spectra were ob-viously blue shifted and the mean second hyperpolarizability values decreased.On the other hand,as the radius of the alkali ions increased,the mean second hyperpolarizability values of the compounds increased gradually.It is indicated that the mean second hyperpolarizability value is sensitive to the number and radius of the alkali metal cations,thus the third order nonlinear optical response can be used as a signal to detect the number and type of alkali met-al ions.展开更多
Advances in metal-free materials and the popularization of Computer-Aided Design and Manufacturing (CAD/CAM) have led to the wide clinical use of all-ceramic crowns for esthetic restorations. A 72-year-old woman prese...Advances in metal-free materials and the popularization of Computer-Aided Design and Manufacturing (CAD/CAM) have led to the wide clinical use of all-ceramic crowns for esthetic restorations. A 72-year-old woman presented to our hospital with unesthetic restorations on the right upper and lower posterior teeth. Intraoral examination revealed poorly fitting metal crown margins. Defective prostheses were removed, and provisional restorations were provided to stabilize the mandibular position. Optical impressions and the maxillomandibular relationship were recorded using an intraoral scanner, and monolithic zirconia crowns were fabricated using CAD/CAM technology for complete veneer crown restorative treatment. Occlusal examination revealed an improvement in occlusal force distribution at initial examination (right side: 33.5%, left side: 66.5%) after placement of the zirconia crowns (right side: 54.9%, left side: 45.1%). Occlusal force and occlusal force distribution area also showed an increasing trend. The Oral Health Impact Profile short form (OHIP-14) score decreased from 7 points at initial examination to 0 points after prosthodontic treatment. Appropriate diagnosis and treatment planning contributed to the increased occlusal force and balanced occlusal force distribution. Therefore, the present case indicates the potential of monolithic zirconia crowns to achieve both esthetic and stable functional outcomes.展开更多
Cork oak in Maamora forest is experiencing the dieback phenomenon. The evaluation of the latter in this forest has gained the importance over time and with the solicitation of managers to objectify its phytosanitary s...Cork oak in Maamora forest is experiencing the dieback phenomenon. The evaluation of the latter in this forest has gained the importance over time and with the solicitation of managers to objectify its phytosanitary situation. Aiming at prioritizing management actions, remote sensing seems to be an effective tool to inquire about stands’ health conditions and their evolution. To this end, this study aims at mapping and validating health status of cork oak stands in Maamora. Sentinel 2 images in 2015 and 2020 were processed to calculate the differential normalized difference water index (NDWI), revealing vegetation moisture variation caused by drought. A statistical method based on thresholds was used to map cork oak dieback stands, those with no changes and those recovered. Results have shown that 54.63% of cork oak in Maamora forest have not changed in terms of phytosanitary situation between 2015 and 2020, 31.10% of oak stands are afflicted by a slight decline and 12.97% by a severe decline. Areas with slight or strong recovery remain minimal and represent 1.04% and 0.25% respectively. Ground data indicated that the map generated displayed a good distinction between stands severely and slightly declined with a global accuracy of 66.66%. Therefore, further research elaborating an advanced vegetation index reflecting the various factors of dieback would be of much importance.展开更多
Eucalyptus forests are grown in many parts of the world for their commercial value and use in construction projects. Density management becomes im- portant as a means to attain the management goals in these forests. C...Eucalyptus forests are grown in many parts of the world for their commercial value and use in construction projects. Density management becomes im- portant as a means to attain the management goals in these forests. Changes in canopy and tree crown structure were quantified for Eucalyptus urophylla x E. grandis forests at different ages to determine when canopy closure occurs and the onset of competition begins. Site index was developed for these forests to determine whether site quality affects the canopy structure. Site index had little effect in the forests sampled, with the forest canopy on the better sites becoming slightly more elongated. Based upon crown projection ratio and crown diameter: dbh (diameter at breast height) ratio, it appears that crown closure occurs by age 4 years in these forests. The age at which this occurs was also checked and verified with the evaluation of relative spacing, RS (the ratio of the mean distance between trees to the average dominant height of the stand). The RS value displayed a rapid decline until age 4 years, and then became relatively flat through age 21 years. The rapid height growth during the first 3 years with no change in density accounted for this rapid decrease. By age 4 years, reductions in the number of trees due to mortality began to have more of an influence on this value, resulting in a more gradual de- cline. The implications for management are discussed.展开更多
Circadian rhythms are self-sustaining oscillations within biological systems that play key roles in a diverse multitude of physiological processes.The circadian clock mechanisms in brain and peripheral tissues can osc...Circadian rhythms are self-sustaining oscillations within biological systems that play key roles in a diverse multitude of physiological processes.The circadian clock mechanisms in brain and peripheral tissues can oscillate independently or be synchronized/disrupted by external stimuli.Dental enamel is a type of mineralized tissue that forms the exterior surface of the tooth crown.Incremental Retzius lines are readily observable microstructures of mature tooth enamel that indicate the regulation of amelogenesis by circadian rhythms.Teeth enamel is formed by enamel-forming cells known as ameloblasts,which are regulated and orchestrated by the circadian clock during amelogenesis.This review will first examine the key roles of the circadian clock in regulating ameloblasts and amelogenesis.Several physiological processes are involved,including gene expression,cell morphology,metabolic changes,matrix deposition,ion transportation,and mineralization.Next,the potential detrimental effects of circadian rhythm disruption on enamel formation are discussed.Circadian rhythm disruption can directly lead to Enamel Hypoplasia,which might also be a potential causative mechanism of amelogenesis imperfecta.Finally,future research trajectory in this field is extrapolated.It is hoped that this review will inspire more intensive research efforts and provide relevant cues in formulating novel therapeutic strategies for preventing tooth enamel developmental abnormalities.展开更多
Objective] The study was aimed to improve the yield and quality of cashew. [Method] Through the comparative analysis, the survival rate, new germi-nation and yield characteristics of the cutting stems with different h...Objective] The study was aimed to improve the yield and quality of cashew. [Method] Through the comparative analysis, the survival rate, new germi-nation and yield characteristics of the cutting stems with different heights by stem grafting and bark grafting. [Result] The best cutting stem height of cashew should be in 100-150 cm, when the number of new germinated shoots was 85.5-87.7. Stem grafting could significantly improve the survival rate of the shooting branch (92.7%), growth condition of which was better than that of bark grafting, and it also had no clip cortex. The yield of stem grafting was significantly higher than that of bark grafting, and it could reach up to 18.1 kg/plant in 4 years. The branches from stem grafting had significantly better ability in resisting the wind damage than those from bark grafting. [Conclusion] The study provided references for the crown grafting of cashew planting in China.展开更多
The semiarid grasslands of Argentina’s central region have been modified by domestic livestock grazing,both in their composition and structure.The increase in the proportion of woody and non-forage species and the de...The semiarid grasslands of Argentina’s central region have been modified by domestic livestock grazing,both in their composition and structure.The increase in the proportion of woody and non-forage species and the decrease in forage species are some of the most evident results of this process.There is limited available information about the effect of differential grazing pressures on morphometric attributes of native species,and it also depends on the life histories of the species in this grassland.The objective of this work was to evaluate some morphometric aspects in the grasses Poa ligularis Nees ex Steud and Piptochaetium napostaense(Speg.).Hack according to distance from the water source in communities in the central semiarid region of Argentina.The study area included areas of low grassland,golden forests,and secondary forests in grasslands(6 fields with 9 paddocks).Grazing pressure was established based on the distance to the water source,so sampling areas were designated near the water source(grazing pressure is greater)and far from the water source(grazing pressure light)in each of the pastures.In both species,specimens were selected at random,and the following attributes were measured:crown diameter at ground level(cm),burial depth(cm),average tiller weight per plant(g.Marcello^(−1)),and the density of tillers per unit of crown surface(tillers.cm^(−2)crown).The morphometric attributes evaluated showed differences according to the distance to the watering hole and in the different pastures.Both species presented similar behaviors for the attributes.There were significant differences in the depth of burial and the average weight of tillers per plant,being greater in the areas close to the water source.Regarding the distance to the watering hole,there were no significant differences in crown diameter and tiller density,but the highest values were recorded for the former near the watering hole and for the second far from the watering hole.In pastures with low grassland or secondary forest on the plain,the greatest depth of burial and weight of tillers was recorded closer to the water.In forest areas,the highest density of tillers was found far from the water.For crown diameter,although there was no interaction,the largest diameters were found in plain grassland areas near the waterhole.In general,both species had a differential behavior depending on the grazing pressure that was evident along the physiognomic gradient from plain grassland to forest and that could be interpreted as a strategy to perpetuate themselves against herbivory.展开更多
The program of the plate crown optimal prediction applied in the plate mill of Wuhan Iron and Steel(Group) Co. Ltd. is described. Optimal prediction is programmed in ALPHA 4000. The original profile, wear, expansion ...The program of the plate crown optimal prediction applied in the plate mill of Wuhan Iron and Steel(Group) Co. Ltd. is described. Optimal prediction is programmed in ALPHA 4000. The original profile, wear, expansion and deformation of work rolls are introduced into the program. The plate crown is controlled by the original profile of work rolls and the draft whose objective is the optimal plate crown. The run schedule is also optimized through the optimal prediction of the plate crown.展开更多
文摘Carbon emissions from forest fires are considered an important factor of ecosystem carbon balance and global climate change. Carbon emissions from Japanese red pine stands (Pinus densiflora S. et Z.) burned by crown fire were estimated at Mt. Palgong in Daegu Metropolitan City, and crown fuel characteristics, including crown bulk density, crown base height, and fuel moisture content of Japanese red pine, were analyzed. Total biomass combusted was calculated by subtracting the biomass of burned stands from that of unburned stands exhibiting similar stand structures and site environments. Ten trees in the unburned area and five trees in the burned area were cut by using direct harvesting techniques to estimate crown layer biomass. All biomass sampled was oven-dried and weighed. The dry weight ratios of stems, branches, and needles were 7o%, 21%, and 9%, respectively. The available fuel load susceptible to combustion during the crown fire spread was equivalent to 55% of the crown layer biomass. The crown bulk density was 0.24 kg/m3 on average. The estimated amount of CO2 was 23,454 kg CO2/ha for the crown layer. These results will be useful for calculating the amount of CO2 emitted from forest fires and for developing a forest carbon model in P. densiflora forests.
基金funded by the European Commission and the Regione Calabria with the POR Calabria FESR FSE 2014-2020source[CUP C39B18000070002]Joao M.N.Silva was funded by the Forest Research Centre,a research unit funded by Fundacao para a Ciência e a Tecnologia IP(FCT),Portugal(UIDB/00239/2020)by the project FireCast–Forecasting fire probability and characteristics for a habitable pyro environment,funded by FCT(PCIF/GRF/0204/2017).
文摘Crown fire damage is a mixture of three principal fire-related components:charred material,scorched foliage,and unaltered green canopy.This study estimated the abundance of these physical alterations in two immediate post-fire Mediterranean forest contexts(Portugal and Italy)by applying linear spectral mixture analysis(LSMA)on Sentinel-2 imagery.The tree crowns fire damage was subsequently mapped,integrating fractional abundance information in a random forest(RF)algorithm,comparing the accuracy resulting from the adoption of generic or image spectral libraries as the primary investigative goal.Although image-derived endmembers resulted in more effectiveness in terms of fire-related components abundance quantification(LMSAderived RMSE<0.1),the F-scores always were≥90%whether generic endmembers or image endmembers derived information was employed.The environmental heterogeneity of the two study areas affected the fire severity gradients,with a prevalence of the charred(PT)(45–46%)and green class(IT)(44–53%).Post-fire temporal monitoring was initialized by applying the proposed strategies,and the preliminary results showed a positive recovery trend in forest vegetation from the first year following the fire event,with a reduced charcoal predominance and an increasing proportion of green components.
基金supported by the Natural Science Foundation of China (32071758)the Fundamental Research Funds for the Central Universities of China (No. 2572020BA01)
文摘This paper introduces a new method of calculating crown projection area(CPA),the area of level ground covered by a vertical projection of a tree crown from measured crown radii through numerical interpolation and integration.This novel method and other four existing methods of calculating CPA were compared using detailed crown radius measurements from 30 tall trees of Eucalyptus pilularis variable in crown size,shape,and asymmetry.The four existing methods included the polygonal approach and three ways of calculating CPA as the area of a circle using the arithmetic,geometric and quadratic mean radius.Comparisons were made across a sequence of eight non-consecutive numbers(from 2 to 16)of measured crown radii for each tree over the range of crown asymmetry of the 30 trees through generalized linear models and multiple comparisons of means.The sequence covered the range of the number of crown radii measured for calculating the CPA of a tree in the literature.A crown asymmetry index within the unit interval was calculated for each tree to serve as a normative measure.With a slight overestimation of 2.2%on average and an overall mean error size of 7.9%across the numbers of crown radii that were compared,our new method was the least biased and most accurate.Calculating CPA as a circle using the quadratic mean crown radius was the second best,which had an average overestimation of 4.5%and overall mean error size of 8.8%.These two methods remained by and large unbiased as crown asymmetry increased,while the other three methods showed larger bias of underestimation.For the conventional method of using the arithmetic mean crown radius to calculate CPA as a circle,bias correction factors were developed as a function of crown asymmetry index to delineate the increasing magnitude of bias associated with greater degrees of crown asymmetry.This study reveals and demonstrates such relationships between the accuracy of CPA calculations and crown asymmetry and will help increase awareness among researchers and practitioners on the existence of bias in their CPA calculations and for the need to use an unbiased method in the future.Our new method is recommended for calculating CPA where at least four crown radius measurements per tree are available because that is the minimum number required for its use.
基金funded by the Bavarian Ministry of Nutrition,Agriculture and Forestry through the projects“Acclimation of Forest Trees”(grant#kliffw006)“Maintenance and Monitoring of long term experiments”(W007,grant#Gz:7831-1/874).
文摘Background In Central Europe,forests are increasingly affected by various disturbances,resulting in an increasing gap formation in the canopy.In order to support goal-oriented management,more knowledge is required about the acclimation of the crown and its effects on the basal area growth of trees at the edge of a gap.Methods This work compared trees'growth and crown structure at the edge of a transient gap,with a gap size of more than 80m^(2),with trees in the stand that were at least 30m away from the gap.A total of 249 European beeches(Fagus sylvatica L.),Norway spruces(Picea abies L.Karst),Scots pines(Pinus sylvestris L.),oaks(Quercus spp.;Quercus petraea(Matt.)Liebl.,Quercus robur L.),and silver firs(Abies alba Mill.)were examined on long-term experimental plots in southern Germany.Various crown measures were developed and calculated using high-resolution terrestrial laser scanning(TLiDAR)to capture the three-dimensional crown structures.Growth responses to edge conditions were measured based on tree rings.Using linear mixed models,we predict the basal area increment of edge trees relative to trees in the stand under wet and dry soil moisture conditions after the gap formation.Results We identified i)species-specific acclimation of the crown of edge trees after the gap formation,ii)under wet soil moisture conditions a growth increase of 25%–45%for beech,pine,and oak edge trees and growth losses of 5%–60%for spruce and fir and iii)coniferous tree species benefited from the edge position regarding their basal area increment under dry soil moisture conditions and deciduous tree species grew regardless of the soil moisture conditions at the edge of a gap.Conclusion Gaps have a species-specific effect on the habitus and growth of edge trees and can have both positive and negative impacts on silviculture.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1F1A1047203)financially supported by the Ministry of Trade,Industry and Energy(MOTIE)and Korea Institute for Advancement of Technology(KIAT)through the International Cooperative R&D program(P0026100)+1 种基金the NRF grant funded by the Korea government(MSIT)(2021R1I1A1A01061036)financial support from the NRF grant funded by the Korea government(MSIT)(RS-2023-00213920)。
文摘In the domain of perovskite solar cells(PSCs),the imperative to reconcile impressive photovoltaic performance with lead-related issue and environmental stability has driven innovative solutions.This study pioneers an approach that not only rectifies lead leakage but also places paramount importance on the attainment of rigorous interfacial passivation.Crown ethers,notably benzo-18-crown-6-ether(B18C6),were strategically integrated at the perovskite-hole transport material interface.Crown ethers exhibit a dual role:efficiently sequestering and immobilizing Pb^(2+)ions through host-guest complexation and simultaneously establishing a robust interfacial passivation layer.Selected crown ether candidates,guided by density functional theory(DFT)calculations,demonstrated proficiency in binding Pb2+ions and optimizing interfacial energetics.Photovoltaic devices incorporating these materials achieved exceptional power conversion efficiency(PCE),notably 21.7%for B18C6,underscoring their efficacy in lead binding and interfacial passivation.Analytical techniques,including time-of-flight secondary ion mass spectrometry(ToF-SIMS),ultraviolet photoelectron spectroscopy(UPS),time-resolved photoluminescence(TRPL),and transient absorption spectroscopy(TAS),unequivocally affirmed Pb^(2+)ion capture and suppression of non-radiative recombination.Notably,these PSCs maintained efficiency even after enduring 300 h of exposure to 85%relative humidity.This research underscores the transformative potential of crown ethers,simultaneously addressing lead binding and stringent interfacial passivation for sustainable PSCs poised to commercialize and advance renewable energy applications.
基金supported by the National Natural Science Foundation of China,“Study on crown models for L arix olgensis based on tree growth” (No.31870620)。
文摘Crown development is closely related to the biomass and growth rate of the tree and its width(CW)is an important covariable in growth and yield models and in forest management.To date,various CW models have been proposed.However,limited studies have explicitly focused on additive and inherent correlation of crown components and total CW as well as the influence of competition on crown radius from the corresponding direction.In this study,two model systems were used,i.e.,aggregation method system(AMS)and disaggregation method system(DMS),to develop crown width additive model systems.For calculating spatially explicit competition index(CI),four neighbor tree selection methods were evaluated.CI was decomposed into four cardinal directions and added into the model systems.Results show that the power model form was more proper for our data to fit CW growth.For each crown radius and total CW,height to the diameter at breast height(HDR)and basal area of trees larger than the subject tree(BAL)significantly contributed to the increase of prediction accuracy.The 3-m fixed radius was optimal among the four neighborhoods selection ways.After adding decomposed competition Hegyi index into model systems AMS and DMS,the prediction accuracy improved.Of the model systems evaluated,AMS based on decomposed CI provided the best performance as well as the inherent correlation and additivity properties.Our study highlighted the importance of decomposed CI in tree CW modelling for additive model systems.This study focused on methodology and could be applied to other species or stands.
基金funded by National Natural Science Foundation of China(Grant No.31870623)National Key R&D Program of China(Grant No.2022YFD2200501).
文摘Crown width(CW)is one of the most important tree metrics,but obtaining CW data is laborious and timeconsuming,particularly in natural forests.The Deep Learning(DL)algorithm has been proposed as an alternative to traditional regression,but its performance in predicting CW in natural mixed forests is unclear.The aims of this study were to develop DL models for predicting tree CW of natural spruce-fir-broadleaf mixed forests in northeastern China,to analyse the contribution of tree size,tree species,site quality,stand structure,and competition to tree CW prediction,and to compare DL models with nonlinear mixed effects(NLME)models for their reliability.An amount of total 10,086 individual trees in 192 subplots were employed in this study.The results indicated that all deep neural network(DNN)models were free of overfitting and statistically stable within 10-fold cross-validation,and the best DNN model could explain 69%of the CW variation with no significant heteroskedasticity.In addition to diameter at breast height,stand structure,tree species,and competition showed significant effects on CW.The NLME model(R^(2)=0.63)outperformed the DNN model(R^(2)=0.54)in predicting CW when the six input variables were consistent,but the results were the opposite when the DNN model(R^(2)=0.69)included all 22 input variables.These results demonstrated the great potential of DL in tree CW prediction.
基金supported by the State Key Laboratory of North China Crop Improvement and RegulationNational Key Research and Development Program of China (2018YFD0300501)National Natural Science Foundation of China (31872865)。
文摘Fusarium crown rot(FCR) is a soilborne disease causing severe yield losses in many wheat-growing areas of the world. Diseased plants show browning and necrosis of roots and stems causing white heads at maturity. Little is known about the molecular processes employed by wheat roots to respond to the disease. We characterized morphological, transcriptional and hormonal changes in wheat seedling roots following challenge with Fusarium pseudograminearum(Fp), the main pathogen of FCR. The pathogen inhibited root development to various extents depending on plants' resistance level. Many genes responsive to FCR infection in wheat roots were enriched in plant hormone pathways. The contents of compounds involved in biosynthesis and metabolism of jasmonic acid, salicylic acid, cytokinin and auxin were drastically changed in roots at five days post-inoculation. Presoaking seeds in methyl jasmonate for 24 h promoted FCR resistance, whereas presoaking with cytokinin 6-benzylaminopurine made plants more susceptible. Overexpression of TaOPR3, a gene involved in jasmonic acid biosynthesis, enhanced plant resistance as well as root and shoot growth during infection.
基金supported by the National Natural Science Foundation of China–Shandong Joint Fund(No.U1706226)the National Natural Science Foundation of China(No.52171284).
文摘Rubble mound breakwaters with a crown wall are a common coastal engineering structure.The wave force on crown walls is an important parameter for the practice engineering design.Particularly,the wave force on crown walls under intermediate depths has been studied through physical model tests and numerical simulations.In this study,a three-dimensional numerical wave flume was developed to investigate monochromatic wave interactions in a rubble mound breakwater with a crown wall.Armor blocks were modeled in detail.The Navier-Stokes equations for two-phase incompressible flows,combined with shear stress transport k-ωturbulence model and volume of fluid method for tracking the free surface,were solved.A set of laboratory experiments were performed to validate the adopted model.Subsequently,a series of numerical simulations were implemented to examine the impacts of different hydrodynamic parameters(including wave height,incident wave period,and water depth)and the berm width on the wave force of the crown wall.Finally,a comparison of the experimental results and Martin method shows that the latter method is not suitable for this experimental scope.New empirical formulas are proposed to predict the wave force on crown walls under intermediate depth.The results can provide a basis for the design of crown wall of rubble mound breakwaters at intermediate depths.
基金supported by the National Natural Science Foundation of China(U21A20332,52103226,52202275,52203314,and 12204253)the Distinguished Young Scholars Fund of Jiangsu Province(BK20220061)the Fellowship of China Postdoctoral Science Foundation(2021M702382)。
文摘Electrosynthesis of ammonia from the reduction of nitrogen is still confronted with the limited supply of gas reactant in dynamics as well as high activation barrier in thermodynamics.Unfortunately,despite tremendous efforts devoted to electrocatalysts themselves,they still fail to tackle the above two challenges simultaneously.Herein,we employ a heterogeneous catalyst adlayer-composed of crown ethers associated with Li^(+)ions-to achieve the dual promotion of dynamics and thermodynamics for ambient ammonia synthesis.Dynamically,the bound Li^(+)ions interact with the strong quadrupole moment of nitrogen,and trigger considerable reactant flux toward the catalyst.Thermodynamically,Li^(+)associated with the oxygen of crown ether achieves a higher density of states at the Fermi level for the catalyst,enabling effortless electron transfer from the catalysts to nitrogen and thus greatly reducing the activation barrier.As expected,the proof-of-concept system achieves an ammonia yield rate of 168.5μg h^(-1)mg^(-1)and a Faradaic efficiency of 75.3%at-0.3 V vs.RHE.This system-level approach opens up pathways for tackling the two key challenges that have limited the field of ammonia synthesis.
基金surported by the Jilin Province Science and Technology Development Project(No.20220203017SF)Industrialization Project of the 13th Five-Year"Education Department of Jilin Province(No.JJKH20200334KJ)the National Natural Sci-ence Foundation of China(No.11704143).
文摘Bis(15-crown-5)-stilbenes containing crown ether parts have been widely used in a variety of chemical applications,such as cation detectors,because of their ability to selectively bind to alkali metal cations,Bis(15-crown-5)-stilbenes and its derivatives with complexation of one-or two-alkali metal cation(Li^(+),Na^(+)and K^(+))have been theoretically investigat-ed by quantum chemistry methods.The coordination of alkali cations results in partial shrinkage of crown ethers,which directly affected natural distribution analysis charges and molecular orbital energy levels.The number of alkali metal ions has significant effects on absorption spectra and mean second hyperpolarizability.When one alkali metal ion was added to the anticonformer of bis(15-crown-5)-stilbene,the absorption spectra were obvious-ly redshifted and the mean second hyperpolarizability values were slightly increased;while two alkali metal ions were added to bis(15-crown-5)-stilbene,the absorption spectra were ob-viously blue shifted and the mean second hyperpolarizability values decreased.On the other hand,as the radius of the alkali ions increased,the mean second hyperpolarizability values of the compounds increased gradually.It is indicated that the mean second hyperpolarizability value is sensitive to the number and radius of the alkali metal cations,thus the third order nonlinear optical response can be used as a signal to detect the number and type of alkali met-al ions.
文摘Advances in metal-free materials and the popularization of Computer-Aided Design and Manufacturing (CAD/CAM) have led to the wide clinical use of all-ceramic crowns for esthetic restorations. A 72-year-old woman presented to our hospital with unesthetic restorations on the right upper and lower posterior teeth. Intraoral examination revealed poorly fitting metal crown margins. Defective prostheses were removed, and provisional restorations were provided to stabilize the mandibular position. Optical impressions and the maxillomandibular relationship were recorded using an intraoral scanner, and monolithic zirconia crowns were fabricated using CAD/CAM technology for complete veneer crown restorative treatment. Occlusal examination revealed an improvement in occlusal force distribution at initial examination (right side: 33.5%, left side: 66.5%) after placement of the zirconia crowns (right side: 54.9%, left side: 45.1%). Occlusal force and occlusal force distribution area also showed an increasing trend. The Oral Health Impact Profile short form (OHIP-14) score decreased from 7 points at initial examination to 0 points after prosthodontic treatment. Appropriate diagnosis and treatment planning contributed to the increased occlusal force and balanced occlusal force distribution. Therefore, the present case indicates the potential of monolithic zirconia crowns to achieve both esthetic and stable functional outcomes.
文摘Cork oak in Maamora forest is experiencing the dieback phenomenon. The evaluation of the latter in this forest has gained the importance over time and with the solicitation of managers to objectify its phytosanitary situation. Aiming at prioritizing management actions, remote sensing seems to be an effective tool to inquire about stands’ health conditions and their evolution. To this end, this study aims at mapping and validating health status of cork oak stands in Maamora. Sentinel 2 images in 2015 and 2020 were processed to calculate the differential normalized difference water index (NDWI), revealing vegetation moisture variation caused by drought. A statistical method based on thresholds was used to map cork oak dieback stands, those with no changes and those recovered. Results have shown that 54.63% of cork oak in Maamora forest have not changed in terms of phytosanitary situation between 2015 and 2020, 31.10% of oak stands are afflicted by a slight decline and 12.97% by a severe decline. Areas with slight or strong recovery remain minimal and represent 1.04% and 0.25% respectively. Ground data indicated that the map generated displayed a good distinction between stands severely and slightly declined with a global accuracy of 66.66%. Therefore, further research elaborating an advanced vegetation index reflecting the various factors of dieback would be of much importance.
基金Supported by Undergraduate Research Abroad Program,Ohio State University,USA(11731-011000)~~
文摘Eucalyptus forests are grown in many parts of the world for their commercial value and use in construction projects. Density management becomes im- portant as a means to attain the management goals in these forests. Changes in canopy and tree crown structure were quantified for Eucalyptus urophylla x E. grandis forests at different ages to determine when canopy closure occurs and the onset of competition begins. Site index was developed for these forests to determine whether site quality affects the canopy structure. Site index had little effect in the forests sampled, with the forest canopy on the better sites becoming slightly more elongated. Based upon crown projection ratio and crown diameter: dbh (diameter at breast height) ratio, it appears that crown closure occurs by age 4 years in these forests. The age at which this occurs was also checked and verified with the evaluation of relative spacing, RS (the ratio of the mean distance between trees to the average dominant height of the stand). The RS value displayed a rapid decline until age 4 years, and then became relatively flat through age 21 years. The rapid height growth during the first 3 years with no change in density accounted for this rapid decrease. By age 4 years, reductions in the number of trees due to mortality began to have more of an influence on this value, resulting in a more gradual de- cline. The implications for management are discussed.
基金supported by grants from the National Key R&D Program of China(2022YFC2401803)the National Natural Science Foundation of China(51973004)+1 种基金the China Postdoctoral Science Foundation(2023M730116)the Peking University Medicine Sailing Program for YoungScholars’Scientific&Technological Innovation(BMU2023YFJHPY012).
文摘Circadian rhythms are self-sustaining oscillations within biological systems that play key roles in a diverse multitude of physiological processes.The circadian clock mechanisms in brain and peripheral tissues can oscillate independently or be synchronized/disrupted by external stimuli.Dental enamel is a type of mineralized tissue that forms the exterior surface of the tooth crown.Incremental Retzius lines are readily observable microstructures of mature tooth enamel that indicate the regulation of amelogenesis by circadian rhythms.Teeth enamel is formed by enamel-forming cells known as ameloblasts,which are regulated and orchestrated by the circadian clock during amelogenesis.This review will first examine the key roles of the circadian clock in regulating ameloblasts and amelogenesis.Several physiological processes are involved,including gene expression,cell morphology,metabolic changes,matrix deposition,ion transportation,and mineralization.Next,the potential detrimental effects of circadian rhythm disruption on enamel formation are discussed.Circadian rhythm disruption can directly lead to Enamel Hypoplasia,which might also be a potential causative mechanism of amelogenesis imperfecta.Finally,future research trajectory in this field is extrapolated.It is hoped that this review will inspire more intensive research efforts and provide relevant cues in formulating novel therapeutic strategies for preventing tooth enamel developmental abnormalities.
基金Supported by the National Nonprofit Institute Research Grant of CATAS-TCGRI(163003201503316300320140322016+1 种基金pzsfyl-201613)the Ministry of Agriculture Tropical Crop Germplasm Resources Protection(16RZZY-101)~~
文摘Objective] The study was aimed to improve the yield and quality of cashew. [Method] Through the comparative analysis, the survival rate, new germi-nation and yield characteristics of the cutting stems with different heights by stem grafting and bark grafting. [Result] The best cutting stem height of cashew should be in 100-150 cm, when the number of new germinated shoots was 85.5-87.7. Stem grafting could significantly improve the survival rate of the shooting branch (92.7%), growth condition of which was better than that of bark grafting, and it also had no clip cortex. The yield of stem grafting was significantly higher than that of bark grafting, and it could reach up to 18.1 kg/plant in 4 years. The branches from stem grafting had significantly better ability in resisting the wind damage than those from bark grafting. [Conclusion] The study provided references for the crown grafting of cashew planting in China.
基金supported by Facultad de Agronomía,UNLPam(308/13,343/2013,231/17-CD-FA-UNLPam,HDE).
文摘The semiarid grasslands of Argentina’s central region have been modified by domestic livestock grazing,both in their composition and structure.The increase in the proportion of woody and non-forage species and the decrease in forage species are some of the most evident results of this process.There is limited available information about the effect of differential grazing pressures on morphometric attributes of native species,and it also depends on the life histories of the species in this grassland.The objective of this work was to evaluate some morphometric aspects in the grasses Poa ligularis Nees ex Steud and Piptochaetium napostaense(Speg.).Hack according to distance from the water source in communities in the central semiarid region of Argentina.The study area included areas of low grassland,golden forests,and secondary forests in grasslands(6 fields with 9 paddocks).Grazing pressure was established based on the distance to the water source,so sampling areas were designated near the water source(grazing pressure is greater)and far from the water source(grazing pressure light)in each of the pastures.In both species,specimens were selected at random,and the following attributes were measured:crown diameter at ground level(cm),burial depth(cm),average tiller weight per plant(g.Marcello^(−1)),and the density of tillers per unit of crown surface(tillers.cm^(−2)crown).The morphometric attributes evaluated showed differences according to the distance to the watering hole and in the different pastures.Both species presented similar behaviors for the attributes.There were significant differences in the depth of burial and the average weight of tillers per plant,being greater in the areas close to the water source.Regarding the distance to the watering hole,there were no significant differences in crown diameter and tiller density,but the highest values were recorded for the former near the watering hole and for the second far from the watering hole.In pastures with low grassland or secondary forest on the plain,the greatest depth of burial and weight of tillers was recorded closer to the water.In forest areas,the highest density of tillers was found far from the water.For crown diameter,although there was no interaction,the largest diameters were found in plain grassland areas near the waterhole.In general,both species had a differential behavior depending on the grazing pressure that was evident along the physiognomic gradient from plain grassland to forest and that could be interpreted as a strategy to perpetuate themselves against herbivory.
文摘The program of the plate crown optimal prediction applied in the plate mill of Wuhan Iron and Steel(Group) Co. Ltd. is described. Optimal prediction is programmed in ALPHA 4000. The original profile, wear, expansion and deformation of work rolls are introduced into the program. The plate crown is controlled by the original profile of work rolls and the draft whose objective is the optimal plate crown. The run schedule is also optimized through the optimal prediction of the plate crown.