A Bridgman growth furnace was modified by adding adiabatic material between two furnace tubes. The appropriate temperature gradient of 10-30 ℃/cm at the growth interface was obtained by adjusting the distance between...A Bridgman growth furnace was modified by adding adiabatic material between two furnace tubes. The appropriate temperature gradient of 10-30 ℃/cm at the growth interface was obtained by adjusting the distance between the two sections and controlling their temperature. The infrared nonlinear optical (NLO) crystal LiInS2 was successfully grown by the accelerated crucible rotation technique (ACRT). The crystal was characterized by using XRD and transmission microscopy. It is found that the UV-VIS-NIR and Mid-IR transmittances are about 40%.展开更多
Accelerated crucible rotation technique(ACRT) has been used for the directional solidification of Al-4.5wt% Cu binary alloy.By rotating the crucible at varying rate and direction,forced liquid flows are aroused These ...Accelerated crucible rotation technique(ACRT) has been used for the directional solidification of Al-4.5wt% Cu binary alloy.By rotating the crucible at varying rate and direction,forced liquid flows are aroused These flows include Ekman flow,Couette flow and Spiral Shear flow.Especially,Ekman flow acts directly at the L/S interface,changes diffusion and heat exchange conditions and has strong influences on the morphology of L/S interface.Experimental results show that,compared with normal Bridgman specimens,the solidification region is much narrower and the cell spacing is much smaller in ACRT specimens.These influences become much stronger when the accelerating rate is increased.展开更多
Numerical analysis is an effective tool to research the industrial Czochralski (CZ) crystal growth aiming to improve crystal quality and reduce manufactur- ing costs. In this study, a set of global simulations were ...Numerical analysis is an effective tool to research the industrial Czochralski (CZ) crystal growth aiming to improve crystal quality and reduce manufactur- ing costs. In this study, a set of global simulations were carried out to investigate the effect of crystal-crucible rotation and pulling rate on melt convection and solid- liquid (SL) interface shape. Through analyses of the sim- ulation data, it is found that the interface deformation and inherent stress increase during the crystal growth process. The interface deflection increases from 7.4 to 51.3 mm with an increase in crystal size from 150 to 400 mm. In addition, the SL interface shape and flow pattern are sen- sitive to pulling rate and rotation rate. Reducing pulling rate can flat SL interface shape and add energy-consuming. Interface with low deflection can be achieved by adopting certain combination of crystal and crucible rotation rates. The effect of crystal rotation on SL interface shape is less significant at higher crucible rotation rates.展开更多
基金the NNSFC (No. 50590403, 50325311)the 973 program of China (No. 2004CB619002)
文摘A Bridgman growth furnace was modified by adding adiabatic material between two furnace tubes. The appropriate temperature gradient of 10-30 ℃/cm at the growth interface was obtained by adjusting the distance between the two sections and controlling their temperature. The infrared nonlinear optical (NLO) crystal LiInS2 was successfully grown by the accelerated crucible rotation technique (ACRT). The crystal was characterized by using XRD and transmission microscopy. It is found that the UV-VIS-NIR and Mid-IR transmittances are about 40%.
文摘Accelerated crucible rotation technique(ACRT) has been used for the directional solidification of Al-4.5wt% Cu binary alloy.By rotating the crucible at varying rate and direction,forced liquid flows are aroused These flows include Ekman flow,Couette flow and Spiral Shear flow.Especially,Ekman flow acts directly at the L/S interface,changes diffusion and heat exchange conditions and has strong influences on the morphology of L/S interface.Experimental results show that,compared with normal Bridgman specimens,the solidification region is much narrower and the cell spacing is much smaller in ACRT specimens.These influences become much stronger when the accelerating rate is increased.
基金financially supported by the Major National Science and Technology Projects (No. 2009ZX02011)
文摘Numerical analysis is an effective tool to research the industrial Czochralski (CZ) crystal growth aiming to improve crystal quality and reduce manufactur- ing costs. In this study, a set of global simulations were carried out to investigate the effect of crystal-crucible rotation and pulling rate on melt convection and solid- liquid (SL) interface shape. Through analyses of the sim- ulation data, it is found that the interface deformation and inherent stress increase during the crystal growth process. The interface deflection increases from 7.4 to 51.3 mm with an increase in crystal size from 150 to 400 mm. In addition, the SL interface shape and flow pattern are sen- sitive to pulling rate and rotation rate. Reducing pulling rate can flat SL interface shape and add energy-consuming. Interface with low deflection can be achieved by adopting certain combination of crystal and crucible rotation rates. The effect of crystal rotation on SL interface shape is less significant at higher crucible rotation rates.