An effective parameter in the miscible-CO_2 enhanced oil recovery procedure is the minimum miscibility pressure(MMP)defined as the lowest pressure that the oil in place and the injected gas into reservoir achieve misc...An effective parameter in the miscible-CO_2 enhanced oil recovery procedure is the minimum miscibility pressure(MMP)defined as the lowest pressure that the oil in place and the injected gas into reservoir achieve miscibility at a given temperature. Flue gases released from power plants can provide an available source of CO_2,which would otherwise be emitted to the atmosphere, for injection into a reservoir. However, the costs related to gas extraction from flue gases is potentially high. Hence, greater understanding the role of impurities in miscibility characteristics between CO_2 and reservoir fluids helps to establish which impurities are tolerable and which are not. In this study, we simulate the effects of the impurities nitrogen(N_2), methane(C_1), ethane(C_2) and propane(C_3) on CO_2 MMP. The simulation results reveal that,as an impurity, nitrogen increases CO_2–oil MMP more so than methane. On the other hand, increasing the propane(C_3)content can lead to a significant decrease in CO_2 MMP, whereas varying the concentrations of ethane(C_2) does not have a significant effect on the minimum miscibility pressure of reservoir crude oil and CO_2 gas. The novel relationships established are particularly valuable in circumstances where MMP experimental data are not available.展开更多
The effects of crude oil on soil nitrogen dynamics and cycling in plant-soil ecosystems and its effect on the growth of legumes (Calopogonium mucunoides, Centrosema pubescens and Pueraria phaseolodes) grown in wetland...The effects of crude oil on soil nitrogen dynamics and cycling in plant-soil ecosystems and its effect on the growth of legumes (Calopogonium mucunoides, Centrosema pubescens and Pueraria phaseolodes) grown in wetland ultisols were investigated. The test plants species were grown on wetland soil simulated with 0.35, 10.8, 20.5, and 50 g.kg<sup>-1</sup>levels of crude oil contamination. The results showed time and species dependent variation in mineral N content of the treated soils. The variation is indicative of significant interaction between the hydrocarbon content and plant species. Variations in microbial N and microbial C were similar and correlation between the microbial N and the total C (Organic matter (C) + hydrocarbon content (C)) in soil was highly significant (r = 0.96, n = 12, P ≤ 0.01). The presence of hydrocarbon contaminant widens the C:N ratio in soil and leads to more available N being immobilized by soil microorganisms, which reduces available N for plant uptake. This result implies that crude oil contamination significantly reduces N uptake by plants but increases N accumulation in soil microbial biomass. The findings show that N dynamics, transformation and cycling in soil are influenced by hydrocarbons and that the interactions between hydrocarbon content and plant species in contaminated soil are remarkable. The use of plant Centrosema pubescens with poultry manure or NPK fertilizer for bioremediation is more effective than that of Calopogonium mucunoides and Pueraria phaseoloides. However, the selective attributes of the various treatment approaches adopted here may be exploited for enhanced remediation of contaminated wetlands in the Niger Delta region of Nigeria. 展开更多
The study assessed the effectiveness of carpet grass (Axonopus compressus) in the phytoremediation management of oil impacted soil in Ubeji and Alesa Eleme communities of Niger Delta region of Nigeria. To achieve this...The study assessed the effectiveness of carpet grass (Axonopus compressus) in the phytoremediation management of oil impacted soil in Ubeji and Alesa Eleme communities of Niger Delta region of Nigeria. To achieve this, the study employed an experimental research design that involved the use of Axonopus compressus in the management of oil-impacted soil sites of Ubeji and Alesa Eleme. This experiment lasted for four months’ period (one planting season). Axonopus sp. was used for the treatment of the crude oil impacted sites. Laboratory analysis of the soil samples was conducted to determine the effect of phytoremediation on hydrocarbon, acidity, organic matter and moisture loss in oil impacted sites. The study revealed that the use of Axonopus sp. resulted in 66% loss of hydrocarbon from crude oil-impacted soils of Ubeji and Alesa Eleme. However, there is no significant difference in crude oil loss in the soils of Ubeji and Alesa Eleme as a result of Axonopus sp. This could be ascribed to the similarities in soil properties and climate type of the Niger Delta region of Nigeria. It also showed that the growth of Axonopus sp. in the crude oil-impacted soils of Ubeji and Alesa Eleme has reduced the acidity of hydrocarbon content in soils (4.46 - 6.87 pH in Ubeji and 4.66 - 6.86 pH in Alesa Eleme) from the first day to the 90th days of experiment, and thereafter there was stabilization at the 4th month. This indicates that acidity in soil increases (lower pH) with increase in the concentration of crude oil in soils. However, the adoption of Axonopus sp. in hydrocarbon-impacted soils has increased the pH of soils, and enhanced the accumulation of organic matter and moisture content in oil-impacted soils of Ubeji and Alesa Eleme. The implication of the findings is that Axonopus sp. has the tenacity to phytoremediate hydrocarbon concentration in soil effectively in any geographical region of the world;as such, it is recommended for adoption by oil companies, government and non-governmental organization agency for the remediation of oil spill sites.展开更多
文摘An effective parameter in the miscible-CO_2 enhanced oil recovery procedure is the minimum miscibility pressure(MMP)defined as the lowest pressure that the oil in place and the injected gas into reservoir achieve miscibility at a given temperature. Flue gases released from power plants can provide an available source of CO_2,which would otherwise be emitted to the atmosphere, for injection into a reservoir. However, the costs related to gas extraction from flue gases is potentially high. Hence, greater understanding the role of impurities in miscibility characteristics between CO_2 and reservoir fluids helps to establish which impurities are tolerable and which are not. In this study, we simulate the effects of the impurities nitrogen(N_2), methane(C_1), ethane(C_2) and propane(C_3) on CO_2 MMP. The simulation results reveal that,as an impurity, nitrogen increases CO_2–oil MMP more so than methane. On the other hand, increasing the propane(C_3)content can lead to a significant decrease in CO_2 MMP, whereas varying the concentrations of ethane(C_2) does not have a significant effect on the minimum miscibility pressure of reservoir crude oil and CO_2 gas. The novel relationships established are particularly valuable in circumstances where MMP experimental data are not available.
文摘The effects of crude oil on soil nitrogen dynamics and cycling in plant-soil ecosystems and its effect on the growth of legumes (Calopogonium mucunoides, Centrosema pubescens and Pueraria phaseolodes) grown in wetland ultisols were investigated. The test plants species were grown on wetland soil simulated with 0.35, 10.8, 20.5, and 50 g.kg<sup>-1</sup>levels of crude oil contamination. The results showed time and species dependent variation in mineral N content of the treated soils. The variation is indicative of significant interaction between the hydrocarbon content and plant species. Variations in microbial N and microbial C were similar and correlation between the microbial N and the total C (Organic matter (C) + hydrocarbon content (C)) in soil was highly significant (r = 0.96, n = 12, P ≤ 0.01). The presence of hydrocarbon contaminant widens the C:N ratio in soil and leads to more available N being immobilized by soil microorganisms, which reduces available N for plant uptake. This result implies that crude oil contamination significantly reduces N uptake by plants but increases N accumulation in soil microbial biomass. The findings show that N dynamics, transformation and cycling in soil are influenced by hydrocarbons and that the interactions between hydrocarbon content and plant species in contaminated soil are remarkable. The use of plant Centrosema pubescens with poultry manure or NPK fertilizer for bioremediation is more effective than that of Calopogonium mucunoides and Pueraria phaseoloides. However, the selective attributes of the various treatment approaches adopted here may be exploited for enhanced remediation of contaminated wetlands in the Niger Delta region of Nigeria.
文摘The study assessed the effectiveness of carpet grass (Axonopus compressus) in the phytoremediation management of oil impacted soil in Ubeji and Alesa Eleme communities of Niger Delta region of Nigeria. To achieve this, the study employed an experimental research design that involved the use of Axonopus compressus in the management of oil-impacted soil sites of Ubeji and Alesa Eleme. This experiment lasted for four months’ period (one planting season). Axonopus sp. was used for the treatment of the crude oil impacted sites. Laboratory analysis of the soil samples was conducted to determine the effect of phytoremediation on hydrocarbon, acidity, organic matter and moisture loss in oil impacted sites. The study revealed that the use of Axonopus sp. resulted in 66% loss of hydrocarbon from crude oil-impacted soils of Ubeji and Alesa Eleme. However, there is no significant difference in crude oil loss in the soils of Ubeji and Alesa Eleme as a result of Axonopus sp. This could be ascribed to the similarities in soil properties and climate type of the Niger Delta region of Nigeria. It also showed that the growth of Axonopus sp. in the crude oil-impacted soils of Ubeji and Alesa Eleme has reduced the acidity of hydrocarbon content in soils (4.46 - 6.87 pH in Ubeji and 4.66 - 6.86 pH in Alesa Eleme) from the first day to the 90th days of experiment, and thereafter there was stabilization at the 4th month. This indicates that acidity in soil increases (lower pH) with increase in the concentration of crude oil in soils. However, the adoption of Axonopus sp. in hydrocarbon-impacted soils has increased the pH of soils, and enhanced the accumulation of organic matter and moisture content in oil-impacted soils of Ubeji and Alesa Eleme. The implication of the findings is that Axonopus sp. has the tenacity to phytoremediate hydrocarbon concentration in soil effectively in any geographical region of the world;as such, it is recommended for adoption by oil companies, government and non-governmental organization agency for the remediation of oil spill sites.