The catalytic esterification reaction was used to decrease total acid number(TAN) of crude oil by converting naphthenic acids to naphthenic acid esters in the presence of Zn-Al hydrotalcite used as the catalyst and gl...The catalytic esterification reaction was used to decrease total acid number(TAN) of crude oil by converting naphthenic acids to naphthenic acid esters in the presence of Zn-Al hydrotalcite used as the catalyst and glycol used as the reactant. The crude oil and its corresponding esterified oil were characterized by the negative-ion electrospray ionization(ESI) Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS). Six acidic class species, O_2, O_1, N_1, N_2, N_1O_1 and N_1O_2 were assigned in the negative-ion spectrum both in the crude oil and its esterified oil. Among the identified acidic compounds, the O2 class was dominant. The relative abundance of O_2 class species was much higher than other acidic class species in crude oil, while it was significantly decreased after esterification. The most abundant O_2 class species had a carbon number of 30-34 and a double-bond equivalence(DBE) value of 5 before and after esterification. It could be concluded that the naphthenic acids in crude oil can be esterified to lower its TAN value, and each of them seems to exhibit identical esterification efficiency approximately due to the similar DBE versus the-carbon number distribution before and after esterification.展开更多
Most heavy crude oils underwent biodegradation and generated a significant amount of naphthenic acids. Naphthenic acids are polar compounds with the carboxylic group and are considered as a major factor affecting the ...Most heavy crude oils underwent biodegradation and generated a significant amount of naphthenic acids. Naphthenic acids are polar compounds with the carboxylic group and are considered as a major factor affecting the oil viscosity. However, the relationship between the molecular composition of naphthenic acids and oil viscosity is not well understood. This study examined a “clean” heavy oil with low contents of heteroatoms but had a high content of naphthenic acids. Naphthenic acids were fractionated by distillation and caustic extraction. The molecular composition was characterized by high-resolution Orbitrap mass spectrometry. It was found that the 2- and 3-ring naphthenic monoacids with 15–35 carbon atoms are dominant components of the acid fractions;the caustic extraction is capable of isolating naphthenic acids with less than 35 carbons, which is equivalent to the upper limit of the distillable components, but not those in the residue fraction;the total acid number of the heavy distillates is higher than that of the residue fraction;the viscosity of the distillation fraction increases exponentially with an increased boiling point of the distillates. Blending experiments indicates that there is a strong correlation between the oil viscosity and acids content, although the acid content is only a few percent of the total oil.展开更多
Highly acidic crude oil is thermally soaked to investigate how the temperature and time involved affect the removal of organic acid in feedstock. Experimental results indicate that thermal treatment is an effective a...Highly acidic crude oil is thermally soaked to investigate how the temperature and time involved affect the removal of organic acid in feedstock. Experimental results indicate that thermal treatment is an effective approach to decreasing acidity and the acid removal rate reaches 80%. Temperature is one of the main factors that determine the acid removal reaction. When the temperature ranges from 420oC to 440oC, the acid removal rate increases with the rise of the reaction temperature, but the increase slows down gradually. At the reaction temperature below 440oC, the long reaction time favors the acid removal. The cracking and polymerization of hydrocarbon molecules take place so that the properties of the crude oil change at the same time when the highly acidic crude is thermally treated.展开更多
The rape project of "Development and Application of Cabbage Type Rape Hybrids with Strong Heterosis" which belongs to National 863 Program aimed to breed the rape variety whose rapeseed yield or oil yield increased ...The rape project of "Development and Application of Cabbage Type Rape Hybrids with Strong Heterosis" which belongs to National 863 Program aimed to breed the rape variety whose rapeseed yield or oil yield increased more than 10% compared with check (CK) variety, or oil yield increased more than 3 percentage points compared with CK. In the regional trial in the middle react,es of the Yangtze River for two years, the average rapeseed yield and oil yield of Youyan 924 which is a hybrid rape variety respectively reached 2 695.95 and 1 264.35 kg/hm2, which respectively increased by 5.22% and 13.4% compared with those of the other test- ing varieties in the same group, and respectively increased by 10.06% and 23.68% compared with those of Zhongyouza 2 which belongs to CK, thus reaching the standard of hybrid rape variety with strong heterosis; the average oil percentage of the variety in the two years was 46.63%,which increased by 3.44 percentage points compared with that of all the other testing varieties in the same group, and in- creased by 5.14 percentage points compared with that of Zhongyouza 2, and the oil percentage of it in the production testing reached 49.21%. Thus Youyan 924 is a variety with strong heterosis and high oil, moreover, its contents of erucic acid and glucosinolate are 0,25% and 20.27 μmol/g, respectively. From the data aggregation of national regional trial, it has the advantages of high oil yield, high yielding ability, reaching the standards of low erucic acid and low glucosinolate, strong lodging re- sistance, good disease resistance aqd moderate mature period.展开更多
A new technique for separation of petroleum acids from crude oil was proposed. The method relates to processes for treating acidic oils or fractions thereof to reduce or eliminate their acidity by addition of effectiv...A new technique for separation of petroleum acids from crude oil was proposed. The method relates to processes for treating acidic oils or fractions thereof to reduce or eliminate their acidity by addition of effective amounts of crosslinked polymeric amines such as polypropylene amine and anionic exchange resins having amino-groups. Petroleum acids contained in the mixture can be extracted by a complex solvent. The results indicate that more than 80 % of the petroleum acids are removed and the process does not cause environmental pollution because all the solvents are recovered and reused in the test.展开更多
As one of the 3 worldwide major grain crops, maize is the main source of food, feed and edible vegetable oil. High-oil maize has been selectively bred for many years due to its high oil content and nutritional quality...As one of the 3 worldwide major grain crops, maize is the main source of food, feed and edible vegetable oil. High-oil maize has been selectively bred for many years due to its high oil content and nutritional quality. However, compared with normal maize, the progress of high-oil maize breeding is hindered nowadays. Main problems are scarce of high-oil maize germplasm, conventional breeding methods, and slow genetic research progress on oil content and fatty acid composition. In this study, germplasm innovation and gene mining of high-oil maize were reviewed to provide theoretical reference for genetic breeding and utilization. Several high-oil basic populations have been developed after more than 100 years of selection, which have served as the unique resources for high-oil maize breeding. They have also been used to dissect genetic architecture of oil biosynthesis in maize kernel. Using linkage and association analyses, many QTLs and loci associated with oil content and fatty acid composition have been identified and mapped. In addition, some candidate genes for QTLs have been validated to regulate maize grain oil content and fatty acid composition. Prospect for high-oil maize was also discussed to provide knowledge about genetic mechanism of oil biosynthesis and improvement of kernel quality in maize.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 21206194)
文摘The catalytic esterification reaction was used to decrease total acid number(TAN) of crude oil by converting naphthenic acids to naphthenic acid esters in the presence of Zn-Al hydrotalcite used as the catalyst and glycol used as the reactant. The crude oil and its corresponding esterified oil were characterized by the negative-ion electrospray ionization(ESI) Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS). Six acidic class species, O_2, O_1, N_1, N_2, N_1O_1 and N_1O_2 were assigned in the negative-ion spectrum both in the crude oil and its esterified oil. Among the identified acidic compounds, the O2 class was dominant. The relative abundance of O_2 class species was much higher than other acidic class species in crude oil, while it was significantly decreased after esterification. The most abundant O_2 class species had a carbon number of 30-34 and a double-bond equivalence(DBE) value of 5 before and after esterification. It could be concluded that the naphthenic acids in crude oil can be esterified to lower its TAN value, and each of them seems to exhibit identical esterification efficiency approximately due to the similar DBE versus the-carbon number distribution before and after esterification.
基金supported by the National Key R&D Program of China(2018YFA0702400)Science Foundation of China University of Petroleum,Beijing(ZX20210029).
文摘Most heavy crude oils underwent biodegradation and generated a significant amount of naphthenic acids. Naphthenic acids are polar compounds with the carboxylic group and are considered as a major factor affecting the oil viscosity. However, the relationship between the molecular composition of naphthenic acids and oil viscosity is not well understood. This study examined a “clean” heavy oil with low contents of heteroatoms but had a high content of naphthenic acids. Naphthenic acids were fractionated by distillation and caustic extraction. The molecular composition was characterized by high-resolution Orbitrap mass spectrometry. It was found that the 2- and 3-ring naphthenic monoacids with 15–35 carbon atoms are dominant components of the acid fractions;the caustic extraction is capable of isolating naphthenic acids with less than 35 carbons, which is equivalent to the upper limit of the distillable components, but not those in the residue fraction;the total acid number of the heavy distillates is higher than that of the residue fraction;the viscosity of the distillation fraction increases exponentially with an increased boiling point of the distillates. Blending experiments indicates that there is a strong correlation between the oil viscosity and acids content, although the acid content is only a few percent of the total oil.
文摘Highly acidic crude oil is thermally soaked to investigate how the temperature and time involved affect the removal of organic acid in feedstock. Experimental results indicate that thermal treatment is an effective approach to decreasing acidity and the acid removal rate reaches 80%. Temperature is one of the main factors that determine the acid removal reaction. When the temperature ranges from 420oC to 440oC, the acid removal rate increases with the rise of the reaction temperature, but the increase slows down gradually. At the reaction temperature below 440oC, the long reaction time favors the acid removal. The cracking and polymerization of hydrocarbon molecules take place so that the properties of the crude oil change at the same time when the highly acidic crude is thermally treated.
基金Supported by the Planned Project of National High and New Technology Research(863)-"Development and Application of Rape Hybrids with Strong Heterosis"(No:2011AA10A104)~~
文摘The rape project of "Development and Application of Cabbage Type Rape Hybrids with Strong Heterosis" which belongs to National 863 Program aimed to breed the rape variety whose rapeseed yield or oil yield increased more than 10% compared with check (CK) variety, or oil yield increased more than 3 percentage points compared with CK. In the regional trial in the middle react,es of the Yangtze River for two years, the average rapeseed yield and oil yield of Youyan 924 which is a hybrid rape variety respectively reached 2 695.95 and 1 264.35 kg/hm2, which respectively increased by 5.22% and 13.4% compared with those of the other test- ing varieties in the same group, and respectively increased by 10.06% and 23.68% compared with those of Zhongyouza 2 which belongs to CK, thus reaching the standard of hybrid rape variety with strong heterosis; the average oil percentage of the variety in the two years was 46.63%,which increased by 3.44 percentage points compared with that of all the other testing varieties in the same group, and in- creased by 5.14 percentage points compared with that of Zhongyouza 2, and the oil percentage of it in the production testing reached 49.21%. Thus Youyan 924 is a variety with strong heterosis and high oil, moreover, its contents of erucic acid and glucosinolate are 0,25% and 20.27 μmol/g, respectively. From the data aggregation of national regional trial, it has the advantages of high oil yield, high yielding ability, reaching the standards of low erucic acid and low glucosinolate, strong lodging re- sistance, good disease resistance aqd moderate mature period.
文摘A new technique for separation of petroleum acids from crude oil was proposed. The method relates to processes for treating acidic oils or fractions thereof to reduce or eliminate their acidity by addition of effective amounts of crosslinked polymeric amines such as polypropylene amine and anionic exchange resins having amino-groups. Petroleum acids contained in the mixture can be extracted by a complex solvent. The results indicate that more than 80 % of the petroleum acids are removed and the process does not cause environmental pollution because all the solvents are recovered and reused in the test.
文摘As one of the 3 worldwide major grain crops, maize is the main source of food, feed and edible vegetable oil. High-oil maize has been selectively bred for many years due to its high oil content and nutritional quality. However, compared with normal maize, the progress of high-oil maize breeding is hindered nowadays. Main problems are scarce of high-oil maize germplasm, conventional breeding methods, and slow genetic research progress on oil content and fatty acid composition. In this study, germplasm innovation and gene mining of high-oil maize were reviewed to provide theoretical reference for genetic breeding and utilization. Several high-oil basic populations have been developed after more than 100 years of selection, which have served as the unique resources for high-oil maize breeding. They have also been used to dissect genetic architecture of oil biosynthesis in maize kernel. Using linkage and association analyses, many QTLs and loci associated with oil content and fatty acid composition have been identified and mapped. In addition, some candidate genes for QTLs have been validated to regulate maize grain oil content and fatty acid composition. Prospect for high-oil maize was also discussed to provide knowledge about genetic mechanism of oil biosynthesis and improvement of kernel quality in maize.