For the Pearl River plume, the supercritical, distinct plume front appears in downwelling-favorable winds, which is easily observed due to the distinct boundary between the plume water and the ambient water. In this p...For the Pearl River plume, the supercritical, distinct plume front appears in downwelling-favorable winds, which is easily observed due to the distinct boundary between the plume water and the ambient water. In this paper, in situ and satellite observations of a plume front are utilized to explore the Pearl River plume front properties under the downwelling-favorable winds. Field observations clearly show frontal structure, especially the two-layer structure in the plume water and the downward-motion of water in the frontal region. The Advanced Synthetic Aperture Radar(ASAR) images are also analyzed to unveil the plume front: there is a white stripe on the west side out of the river mouth under downwelling-favorable winds, which is identified as a supercritical plume front, and the width of the plume front is about 250 m. The normalized velocity gradient shows the intense velocity convergence in the front region. Also, analyses of ASAR images imply that the river discharge plays an important role in controlling the location and shape of the front.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41476002 and 41206164)the Natural Science Foundation of Shandong Province(Grant No.ZR2014DQ013)+1 种基金State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences(Grant No.LTO1409)China Postdoctoral Science Foundation(Grant No.2014M560574)
文摘For the Pearl River plume, the supercritical, distinct plume front appears in downwelling-favorable winds, which is easily observed due to the distinct boundary between the plume water and the ambient water. In this paper, in situ and satellite observations of a plume front are utilized to explore the Pearl River plume front properties under the downwelling-favorable winds. Field observations clearly show frontal structure, especially the two-layer structure in the plume water and the downward-motion of water in the frontal region. The Advanced Synthetic Aperture Radar(ASAR) images are also analyzed to unveil the plume front: there is a white stripe on the west side out of the river mouth under downwelling-favorable winds, which is identified as a supercritical plume front, and the width of the plume front is about 250 m. The normalized velocity gradient shows the intense velocity convergence in the front region. Also, analyses of ASAR images imply that the river discharge plays an important role in controlling the location and shape of the front.