The osmium-isotope mismatch commonly reported between mid-ocean-ridge basalts(MORBs) and residual mantle might reflect evolution of the MORB Re-Os system after extraction from the asthenosphere, or preferential contri...The osmium-isotope mismatch commonly reported between mid-ocean-ridge basalts(MORBs) and residual mantle might reflect evolution of the MORB Re-Os system after extraction from the asthenosphere, or preferential contribution of radiogenic Os components from mantle. However, in a MOR system, the role of dunite melt channels from the upper mantle and Moho transition zone in regulating isotopic systems between mantle and crust has rarely been evaluated. We report new Re-Os isotopic compositions of base-metal sulfides(BMS), chromites and dunites from dunite lenses with low spinel Cr# [Cr3+/(Cr3++Al3+) ≤ 0.66](products of interaction between MORB-like melts and upper-mantle harzburgites) from the Zedang ophiolite(South Tibet). Re-Os isotopic compositions of low-Cr# dunites from the Oman ophiolite are also shown for comparison. Mineralogical evidence suggests that the Zedang sulfides were originally precipitated as monosulfide solid solutions. The highly variable 187Os/188Os initial ratios(0.1191-0.1702) and low 187Re/188Os(<0.22) of the sulfides suggest that the chromite acted as a sink for Os-bearing sulfides, aggregating discrete Os components with heterogeneous isotopic signatures from asthenospheric or lithospheric mantle into dunite channels. The Zedang chromites and dunites show 187Os/188Os ratios similar to the primitive upper mantle(PUM), except for two dunites with sub-PUM ratios, reflecting the contribution of Os balanced by smaller volumes of Os-rich, unradiogenic sulfides(likely nucleating on Os nanoparticles) and larger volumes of Os-poor radiogenic BMS. Such isotopic heterogeneity, despite with less variation, has been observed in dunite channels from the Oman ophiolite and present-day mid-ocean ridges. Formation of dunite channels in the upper mantle thus can aggregate Os-bearing sulfides with chromite, leaving high Re/Os components into the residual melts. Once such channel systems were built up at the crust-mantle transition zone, the newly incoming MOR magmas would preferentially melt and dissolve the volumetrically abundant radiogenic BMS and retain Os-rich nanoparticles in the channels, further amplifying the Os-isotope mismatch between oceanic crust and mantle. This study sheds new light on the multistage evolution and small-scale behaviors of chalcophile and siderophile elements(e.g., Re-Os) and their isotopes(e.g., 187Re-187Os) with sulfides and chromites in a silicate-dominated melt plumbing system beneath mid-ocean ridges.展开更多
The status of deep geophysical exploration and research in China is summarized in this paper. New achievements in the study of the velocity structure, seismotectonics and geodynamics of the crust and upper mantle are ...The status of deep geophysical exploration and research in China is summarized in this paper. New achievements in the study of the velocity structure, seismotectonics and geodynamics of the crust and upper mantle are also briefly described.展开更多
In this article, we analyze the dynamic characteristics of head wave in multi-layered half-space media models with high-velocity layer or low-velocity layer, and the model with a continuous transition-zone between the...In this article, we analyze the dynamic characteristics of head wave in multi-layered half-space media models with high-velocity layer or low-velocity layer, and the model with a continuous transition-zone between the crust and the mantle by using synthetic seismogram. It is concluded that the dynamic characteristics of head wave are sensitive to the thickness and velocity of the high-velocity layer. There is obvious diffraction phenomenon of seismic wave if the thickness of high-velocity layer is very small compared with the characteristic wavelength. In this case, the high-velocity layer cannot shield the head wave propagating along the upper interface of the media below it, and the amplitude of this head wave is proportional to the thickness or the velocity of the high-velocity layer. When the thickness of high-velocity layer is nearly identical to the characteristic wavelength of seismic wave, the wave phases reflected from the bottom of the high-velocity layer and the head wave phase may have very close arrival and weaken each other because of destructive interference. As to low-velocity layer, the amplitude of the head wave is weak and decreases with the velocity of this layer. It is also found that if a continuous transition-zone between the crust and the mantle is introduced, we can get a strong apparent head wave phase in synthetic seismogram and the amplitude of this phase increases with the thickness or velocity gradient of the transition-zone.展开更多
基金supported by the National Natural Science Foundation of China(41520104003,41873032&41822301)the Fundamental Research Funds for the Central Universities,CUG Wuhan(CUG180604,CUGCJ1709)+1 种基金the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(CUG,MSFGPMR15)the CCFS ARC Centre of Excellence
文摘The osmium-isotope mismatch commonly reported between mid-ocean-ridge basalts(MORBs) and residual mantle might reflect evolution of the MORB Re-Os system after extraction from the asthenosphere, or preferential contribution of radiogenic Os components from mantle. However, in a MOR system, the role of dunite melt channels from the upper mantle and Moho transition zone in regulating isotopic systems between mantle and crust has rarely been evaluated. We report new Re-Os isotopic compositions of base-metal sulfides(BMS), chromites and dunites from dunite lenses with low spinel Cr# [Cr3+/(Cr3++Al3+) ≤ 0.66](products of interaction between MORB-like melts and upper-mantle harzburgites) from the Zedang ophiolite(South Tibet). Re-Os isotopic compositions of low-Cr# dunites from the Oman ophiolite are also shown for comparison. Mineralogical evidence suggests that the Zedang sulfides were originally precipitated as monosulfide solid solutions. The highly variable 187Os/188Os initial ratios(0.1191-0.1702) and low 187Re/188Os(<0.22) of the sulfides suggest that the chromite acted as a sink for Os-bearing sulfides, aggregating discrete Os components with heterogeneous isotopic signatures from asthenospheric or lithospheric mantle into dunite channels. The Zedang chromites and dunites show 187Os/188Os ratios similar to the primitive upper mantle(PUM), except for two dunites with sub-PUM ratios, reflecting the contribution of Os balanced by smaller volumes of Os-rich, unradiogenic sulfides(likely nucleating on Os nanoparticles) and larger volumes of Os-poor radiogenic BMS. Such isotopic heterogeneity, despite with less variation, has been observed in dunite channels from the Oman ophiolite and present-day mid-ocean ridges. Formation of dunite channels in the upper mantle thus can aggregate Os-bearing sulfides with chromite, leaving high Re/Os components into the residual melts. Once such channel systems were built up at the crust-mantle transition zone, the newly incoming MOR magmas would preferentially melt and dissolve the volumetrically abundant radiogenic BMS and retain Os-rich nanoparticles in the channels, further amplifying the Os-isotope mismatch between oceanic crust and mantle. This study sheds new light on the multistage evolution and small-scale behaviors of chalcophile and siderophile elements(e.g., Re-Os) and their isotopes(e.g., 187Re-187Os) with sulfides and chromites in a silicate-dominated melt plumbing system beneath mid-ocean ridges.
文摘The status of deep geophysical exploration and research in China is summarized in this paper. New achievements in the study of the velocity structure, seismotectonics and geodynamics of the crust and upper mantle are also briefly described.
基金State Natural Science Foundation of China (40074008) and State Key Basic Research Development and Program-ming Project (G1998040702).
文摘In this article, we analyze the dynamic characteristics of head wave in multi-layered half-space media models with high-velocity layer or low-velocity layer, and the model with a continuous transition-zone between the crust and the mantle by using synthetic seismogram. It is concluded that the dynamic characteristics of head wave are sensitive to the thickness and velocity of the high-velocity layer. There is obvious diffraction phenomenon of seismic wave if the thickness of high-velocity layer is very small compared with the characteristic wavelength. In this case, the high-velocity layer cannot shield the head wave propagating along the upper interface of the media below it, and the amplitude of this head wave is proportional to the thickness or the velocity of the high-velocity layer. When the thickness of high-velocity layer is nearly identical to the characteristic wavelength of seismic wave, the wave phases reflected from the bottom of the high-velocity layer and the head wave phase may have very close arrival and weaken each other because of destructive interference. As to low-velocity layer, the amplitude of the head wave is weak and decreases with the velocity of this layer. It is also found that if a continuous transition-zone between the crust and the mantle is introduced, we can get a strong apparent head wave phase in synthetic seismogram and the amplitude of this phase increases with the thickness or velocity gradient of the transition-zone.