Based on the long period surface wave data recorded by the China Digital Seismograph Network (CDSN), the Q R of fundamental mode Rayleigh wave with periods from 10 s to 146 s is determined for the eastern Sino ...Based on the long period surface wave data recorded by the China Digital Seismograph Network (CDSN), the Q R of fundamental mode Rayleigh wave with periods from 10 s to 146 s is determined for the eastern Sino Korean paraplatform in this paper. The Q β models of the crust and upper mantle are respectively obtained for the 4 paths, with the aid of stochastic inverse method. It shows that in the eastern Sino Korean paraplatform, the average crustal Q β is about 200, and that there exists a weak attenuation layer in the middle crust (about 10~20 km deep) which is possibly related to earthquake prone layer. A strong attenuation layer (low Q ) of 70 km thick extensively exists in the uppermost mantle, with the buried depth about 80 km. The average Q R of fundamental mode Rayleigh wave is between the value of stable tectonic region and that of active tectonic region, and much close to the latter.展开更多
The Benzilan-Tangke deep seismic sounding profile in the western Sichuan region passes through the Song-pan-Garze orogenic belt with trend of NNE. Based on the travel times and the related amplitudes of phases in the ...The Benzilan-Tangke deep seismic sounding profile in the western Sichuan region passes through the Song-pan-Garze orogenic belt with trend of NNE. Based on the travel times and the related amplitudes of phases in the record sections, the 2-D P-wave crustal structure was ascertained in this paper. The velocity structure has quite strong lateral variation along the profile. The crust is divided into 5 layers, where the first, second and third layer belong to the upper crust, the forth and fifth layer belong to the lower crust. The low velocity anomaly zone gener-ally exists in the central part of the upper crust on the profile, and it integrates into the overlying low velocity basement in the area to the north of Ma'erkang. The crustal structure in the section can be divided into 4 parts: in the south of Garze-Litang fault, between Garze-Litang fault and Xianshuihe fault, between Xianshuihe fault and Longriba fault and in the north of Longriba fault, which are basically coincided with the regional tectonics division. The crustal thickness decreases from southwest to northeast along the profile, that is, from 62 km in the region of the Jinshajiang River to 52 km in the region of the Yellow River. The Moho discontinuity does not obviously change across the Xianshuihe fault based on the PmP phase analysis. The crustal average velocity along the profile is lower, about 6.30 km/s. The Benzilan-Tangke profile reveals that the crust in the study area is orogenic. The Xianshuihe fault belt is located in the central part of the profile, and the velocity is positive anomaly on the upper crust, and negative anomaly on the lower crust and upper mantle. It is considered as a deep tectonic setting in favor of strong earthquake's accumulation and occurrence.展开更多
The seismic data obtained from the wide angle reflection and refraction profiles that pass through Zhangjiakou area of Hebei Province were interpreted. Some conclusions drawn from the result are as follows: (1) The ne...The seismic data obtained from the wide angle reflection and refraction profiles that pass through Zhangjiakou area of Hebei Province were interpreted. Some conclusions drawn from the result are as follows: (1) The nearly EW-trending Zhangbei-Chongli crustal fault zone and WNW-trending Zhangjiakou-Bohai Sea deep crustal fault zone meet in the Zhangbei earthquake (Ms = 6.2) area; (2) At the intersection, the two deep crustal fault zones that stretch to the Moho and the discontinuities of interfaces within the crust form the path for large area basalt eruption in Hannuoba; (3) In the earthquake area, the local velocity reversal in the middle-upper crust and abnormal low velocity zone in the lower crust imply that the magmatic activity there is still fairly violent; and (4) The recent activity of Zhangjiakou-Bohai Sea deep crustal fault zone may be the main cause of the Zhangbei earthquake.展开更多
A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from s...A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (~72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57―64 km in the Bayan Har block, and to 40―45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Moho and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30―60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ = 0.247) in the Lhasa block, 1.78 (σ = 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ = 0.294) in the Bayan Har blocks, and 1.77 (σ = 0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio, indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern Tibetan Plateau. Flowage of the ductile material in lower crust may be attributable to the variation of the gravitational potential energy in upper crust from higher on the plateau to lower off plateau.展开更多
The three-dimension crustal and upper mantle structures in the region around Beijing were studied by seismic tomography. We used the P wave arrival times from local and teleseismic events. These events were recorded b...The three-dimension crustal and upper mantle structures in the region around Beijing were studied by seismic tomography. We used the P wave arrival times from local and teleseismic events. These events were recorded by 250 stations of the North China Seismic Array and 108 stations of the Beijing Telemetry Seismic Network. 118 869 P wave arrivals from 10 285 local events and 12 189 P wave arrivals from 107 teleseismic events were used in the inversion. We obtained the 3-D P wave velocity structure of the crust and upper mantle with the horizontal resolution of 0.3° in the studied region. The tomographic imaging shows the remarkably heterogeneous velocity variation. The velocity anomalies are in well agreement with the geological structure in the shallow crust. The different relationships between seismic activities and velocity anomalies may imply the different seismogenic structure and mechanism. Beneath the Moho under Taihangshan mountain and Yanshan mountain, we found the high velocity anomalies deep to 120 km and 200 km, respectively. The deep high velocity zone may be explained by the existence of the mountain root under Yanshan mountain. The high velocity anomalies in the upper mantle of North China basin may be the relics of the de-rooting from the former craton mantle lithosphere.展开更多
This paper presents a direct gravity inverse method of multilayered variable density models, and gives gravity forward formulae under various conditions of density-depth functions such as the constant, exponential, li...This paper presents a direct gravity inverse method of multilayered variable density models, and gives gravity forward formulae under various conditions of density-depth functions such as the constant, exponential, linear, sine and cosine, cubic spline, and Fourier progression. The testing of theoretical models and the analysis of real examples have been made for the cubic spline function and have proved that the method is effective. Other formulae can be applied under corresponding conditions by means of optimization or other methods.展开更多
The author in this article has specially studied the deep structural contour of the earth’s crust in JZA region. Now, I further manifest that the crust-to-top of upper mantle in the region is subdivided into the seve...The author in this article has specially studied the deep structural contour of the earth’s crust in JZA region. Now, I further manifest that the crust-to-top of upper mantle in the region is subdivided into the seven density interfaces and eight-layered media by using the method of N-layered variable density. It is展开更多
文摘Based on the long period surface wave data recorded by the China Digital Seismograph Network (CDSN), the Q R of fundamental mode Rayleigh wave with periods from 10 s to 146 s is determined for the eastern Sino Korean paraplatform in this paper. The Q β models of the crust and upper mantle are respectively obtained for the 4 paths, with the aid of stochastic inverse method. It shows that in the eastern Sino Korean paraplatform, the average crustal Q β is about 200, and that there exists a weak attenuation layer in the middle crust (about 10~20 km deep) which is possibly related to earthquake prone layer. A strong attenuation layer (low Q ) of 70 km thick extensively exists in the uppermost mantle, with the buried depth about 80 km. The average Q R of fundamental mode Rayleigh wave is between the value of stable tectonic region and that of active tectonic region, and much close to the latter.
基金National Key Research Development Project (No. G1998 040700/sub-project 95-13-02-03).
文摘The Benzilan-Tangke deep seismic sounding profile in the western Sichuan region passes through the Song-pan-Garze orogenic belt with trend of NNE. Based on the travel times and the related amplitudes of phases in the record sections, the 2-D P-wave crustal structure was ascertained in this paper. The velocity structure has quite strong lateral variation along the profile. The crust is divided into 5 layers, where the first, second and third layer belong to the upper crust, the forth and fifth layer belong to the lower crust. The low velocity anomaly zone gener-ally exists in the central part of the upper crust on the profile, and it integrates into the overlying low velocity basement in the area to the north of Ma'erkang. The crustal structure in the section can be divided into 4 parts: in the south of Garze-Litang fault, between Garze-Litang fault and Xianshuihe fault, between Xianshuihe fault and Longriba fault and in the north of Longriba fault, which are basically coincided with the regional tectonics division. The crustal thickness decreases from southwest to northeast along the profile, that is, from 62 km in the region of the Jinshajiang River to 52 km in the region of the Yellow River. The Moho discontinuity does not obviously change across the Xianshuihe fault based on the PmP phase analysis. The crustal average velocity along the profile is lower, about 6.30 km/s. The Benzilan-Tangke profile reveals that the crust in the study area is orogenic. The Xianshuihe fault belt is located in the central part of the profile, and the velocity is positive anomaly on the upper crust, and negative anomaly on the lower crust and upper mantle. It is considered as a deep tectonic setting in favor of strong earthquake's accumulation and occurrence.
基金This project was sponsored by the State Science and Technology Commission of China (No. 85907020301)the United Earthquake Science Foundation of China (No. 196122). Contribution No.RCEG98003Research Center of Exploration Geophysics, China Seismologica
文摘The seismic data obtained from the wide angle reflection and refraction profiles that pass through Zhangjiakou area of Hebei Province were interpreted. Some conclusions drawn from the result are as follows: (1) The nearly EW-trending Zhangbei-Chongli crustal fault zone and WNW-trending Zhangjiakou-Bohai Sea deep crustal fault zone meet in the Zhangbei earthquake (Ms = 6.2) area; (2) At the intersection, the two deep crustal fault zones that stretch to the Moho and the discontinuities of interfaces within the crust form the path for large area basalt eruption in Hannuoba; (3) In the earthquake area, the local velocity reversal in the middle-upper crust and abnormal low velocity zone in the lower crust imply that the magmatic activity there is still fairly violent; and (4) The recent activity of Zhangjiakou-Bohai Sea deep crustal fault zone may be the main cause of the Zhangbei earthquake.
基金the National Natural Science Foundation of China (Grants No. 40334041 and 40774037)the International Cooperation Program of the Ministry of Science and Technology of China (Grant No.2003DF000011)
文摘A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (~72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57―64 km in the Bayan Har block, and to 40―45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Moho and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30―60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ = 0.247) in the Lhasa block, 1.78 (σ = 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ = 0.294) in the Bayan Har blocks, and 1.77 (σ = 0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio, indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern Tibetan Plateau. Flowage of the ductile material in lower crust may be attributable to the variation of the gravitational potential energy in upper crust from higher on the plateau to lower off plateau.
基金supported by the National Special Fund of Science and Technological Basic Work under grant No. 2006FY110100partially by the 2007 Special Fund of Seismological Industry "Seismic Travel Time Table in the Capital Area" under grant No. 200708009Contribution No. is 09FE3003 of Institute of Geophysics,China Earthquake Administration
文摘The three-dimension crustal and upper mantle structures in the region around Beijing were studied by seismic tomography. We used the P wave arrival times from local and teleseismic events. These events were recorded by 250 stations of the North China Seismic Array and 108 stations of the Beijing Telemetry Seismic Network. 118 869 P wave arrivals from 10 285 local events and 12 189 P wave arrivals from 107 teleseismic events were used in the inversion. We obtained the 3-D P wave velocity structure of the crust and upper mantle with the horizontal resolution of 0.3° in the studied region. The tomographic imaging shows the remarkably heterogeneous velocity variation. The velocity anomalies are in well agreement with the geological structure in the shallow crust. The different relationships between seismic activities and velocity anomalies may imply the different seismogenic structure and mechanism. Beneath the Moho under Taihangshan mountain and Yanshan mountain, we found the high velocity anomalies deep to 120 km and 200 km, respectively. The deep high velocity zone may be explained by the existence of the mountain root under Yanshan mountain. The high velocity anomalies in the upper mantle of North China basin may be the relics of the de-rooting from the former craton mantle lithosphere.
文摘This paper presents a direct gravity inverse method of multilayered variable density models, and gives gravity forward formulae under various conditions of density-depth functions such as the constant, exponential, linear, sine and cosine, cubic spline, and Fourier progression. The testing of theoretical models and the analysis of real examples have been made for the cubic spline function and have proved that the method is effective. Other formulae can be applied under corresponding conditions by means of optimization or other methods.
文摘The author in this article has specially studied the deep structural contour of the earth’s crust in JZA region. Now, I further manifest that the crust-to-top of upper mantle in the region is subdivided into the seven density interfaces and eight-layered media by using the method of N-layered variable density. It is