A layered crustal block model of North China has been constructed based on large amount of data from seismic sounding carried out in recent two decades. Some deep fault zones, such as the Zhangjiakou.Penglai and Tanch...A layered crustal block model of North China has been constructed based on large amount of data from seismic sounding carried out in recent two decades. Some deep fault zones, such as the Zhangjiakou.Penglai and Tancheng-Lujiang fault zones, divide the upper crust of North China into three upper crustal terranes and nine bolcks. There are distinct differences in velocity and depth distributions, which reflects Cenozoic block faulting in North China in the process of formation of the deep structure. The upper crust shows the features of transition in isostatic adjustment. The existence of a low-velocity layer in the middle crust is characteristic of the crustal structure in North China. There seems to be an increase of rheology of the rocks in the lower crust and a persistence of stable regional stress field. The patterns of the Moho on two sides of the Yanshan-Taihang Mountains are different. The relief of the Moho around Beijing, Shijiazhuang and Guangrao where the deep faults join together shows a quadrantal distribution in some degree. The dynamic sources for seismic activity are the NE-SW horizontal compression and the diapirism of the upper mantle. The middle and upper crust, especially the layered block structure has the most significant effects on seismicity, and the occurrence of earthquakes is more closely related to them than to the Moho.展开更多
The sub-regions are divided for the seismicity of the Chinese mainland based on the hypothesis of the active crustal blocks and the division of the active boundaries. On this result, the seismicity of each active crus...The sub-regions are divided for the seismicity of the Chinese mainland based on the hypothesis of the active crustal blocks and the division of the active boundaries. On this result, the seismicity of each active crustal blocks are studied by calculating the accumulated and released strain of the earthquakes based on strain accumulating and releasing model, and the different seismicity stages of the sub-regions are discussed basically. Finally we have discussed the premise of the model application and the potential problems of the model results.展开更多
文摘A layered crustal block model of North China has been constructed based on large amount of data from seismic sounding carried out in recent two decades. Some deep fault zones, such as the Zhangjiakou.Penglai and Tancheng-Lujiang fault zones, divide the upper crust of North China into three upper crustal terranes and nine bolcks. There are distinct differences in velocity and depth distributions, which reflects Cenozoic block faulting in North China in the process of formation of the deep structure. The upper crust shows the features of transition in isostatic adjustment. The existence of a low-velocity layer in the middle crust is characteristic of the crustal structure in North China. There seems to be an increase of rheology of the rocks in the lower crust and a persistence of stable regional stress field. The patterns of the Moho on two sides of the Yanshan-Taihang Mountains are different. The relief of the Moho around Beijing, Shijiazhuang and Guangrao where the deep faults join together shows a quadrantal distribution in some degree. The dynamic sources for seismic activity are the NE-SW horizontal compression and the diapirism of the upper mantle. The middle and upper crust, especially the layered block structure has the most significant effects on seismicity, and the occurrence of earthquakes is more closely related to them than to the Moho.
基金The Development and Planning Project of National Important Base Research on the Mechanism and Forecast for Continental Strong Earthquake (G19980407).
文摘The sub-regions are divided for the seismicity of the Chinese mainland based on the hypothesis of the active crustal blocks and the division of the active boundaries. On this result, the seismicity of each active crustal blocks are studied by calculating the accumulated and released strain of the earthquakes based on strain accumulating and releasing model, and the different seismicity stages of the sub-regions are discussed basically. Finally we have discussed the premise of the model application and the potential problems of the model results.