期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mechanism of Surface Vertical Deformation in Parts of the Underground Gas Storage Reservoir of Hutubi, Xinjiang, China 被引量:1
1
作者 Li Jie Li Rui +8 位作者 Wang Xiaoqiang Shi Xinpu Qiao Xuejun Zheng Liming Abudutayier. Yaseng Sun Xiaoxu Chen Shujiang Fang Wei Cheng Ruizhong 《Earthquake Research in China》 CSCD 2016年第3期451-463,共13页
The Underground Gas Storage( UGS) in Hutubi( HTB),Xinjiang is the largest gas storage reservoir in China and it has significance for coordinating the gas supply and demand relationship,peak-load regulation,implementat... The Underground Gas Storage( UGS) in Hutubi( HTB),Xinjiang is the largest gas storage reservoir in China and it has significance for coordinating the gas supply and demand relationship,peak-load regulation,implementation of strategic reserves,national security, and social economic sustainable development. Therefore, the deformation monitoring and simulation analysis of UGS operation has important technical support and reference value for the stability and safe operation of the underground gas storage. In this paper,we use the elevation data obtained from 7 periods of second-order leveling surveys in the Hutubi underground gas storage area in 2013- 2015 to analyze the influence of gas well pressure on the vertical deformation of the underground gas storage reservoir.Research has shown that the absolute vertical subsidence rate is approximately in the range from 11. 8mm to 16. 1mm and the relative subsidence change is about 4. 3mm,near the surface deformation of Hutubi underground gas storage area except for the annual subsidence rate of- 2. 86 mm by the basic influence of uplift of the Tianshan Mountains.Groundwater over-extraction in the Hutubi area also has an impact on the vertical variation of the surface in this region. The land surface change per unit pressure of gas storage has an impact of about 0. 625mm- 1. 125 mm. 17 scenes Terra SAR-X radar images acquired from August,2013 to August,2014 are exploited by Small Baseline Subset( SBAS) In SAR method to obtain the surface deformation time series during the operation of UGS in Hutubi,meanwhile combined with the pressure data of injection / productionwells,the multi-point source Mogi model is used to simulate the UGS deformation field in Hutubi. The results show that the deformation characteristics of the whole UGS area is a discontinuous distribution with the peak deformation value of 10 mm and- 8mm in the satellite line of sight( LOS) during gas injection and production,respectively and the retrieved deformation sequences correspond very well to the gas injection / production pressure changes. Based on the multi- point source Mogi model, we simulate the deformation process of UGS,HTB,and with the adaptive forward search method,the radius and depth of point source are obtained. The simulated results indicate that when the average injection / production pressure of UGS,HTB is 18 MPa and 15 MPa, LOS deformation is up to 7mm and- 4mm,respectively,and surface deformation is related to the density of gas injection( production) wells. The UGS gas distribution is not uniform,indicating that the structure of underground gas storage is complex. Thus using a more elaborate geomechanical model and other deformation observation data will be helpful for better simulating the UGS internal structure and explaining the mechanism of deformation. 展开更多
关键词 Underground gas storage vertical deformation Gas well pressure change Leveling survey Small Baseline Subset(SBAS) InSAR Mogi model crustal deformation
下载PDF
描述地壳垂直运动过程的一种函数形式 被引量:1
2
作者 杨国华 巩曰沐 +1 位作者 卢景忠 韩月萍 《地壳形变与地震》 CSCD 1995年第1期45-51,共7页
本文在已有数据处理方法的基础上,利用近代数值逼近理论,给出了从时空域角度描述地壳垂直运动过程的一种具体的函数解析形式。最后给出了一个实际算例。
关键词 数学模型 地壳运动 函数形式 地壳变形
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部