期刊文献+
共找到830篇文章
< 1 2 42 >
每页显示 20 50 100
Crustal structure in northern margin of Tianshan mountains and seismotectonics of the 1906 Manas earthquake 被引量:38
1
作者 王椿镛 楼海 +1 位作者 魏修成 吴庆举 《地震学报》 CSCD 北大核心 2001年第5期460-470,共11页
长86 km、南北向横跨乌鲁木齐坳陷的深地震反射剖面,揭示了北天山山前地壳的薄皮构造特征.共深度点叠加剖面的石河子以南部分显示了天山北缘平行山体的第一和第二排背斜构造.与双程时间分别为2.5~3.0s和5.5~6.0s的反射事件对应的滑脱... 长86 km、南北向横跨乌鲁木齐坳陷的深地震反射剖面,揭示了北天山山前地壳的薄皮构造特征.共深度点叠加剖面的石河子以南部分显示了天山北缘平行山体的第一和第二排背斜构造.与双程时间分别为2.5~3.0s和5.5~6.0s的反射事件对应的滑脱构造,将地壳深部构造与地表逆断裂-褶皱构造联系在一起.玛纳斯断裂以铲形方式向下延伸,在2.5s左右深度归并于第一滑脱面,向南与清水河断裂汇合.在5.5~6.0s深度上为与玛纳斯下背斜相连的主滑脱面.它们最终汇集到准噶尔南缘断裂.石河子以北的坳陷沉积深度达12~14km.沿剖面的莫霍界面深度在准噶尔盆地为45km左右,往南加深至50km.对该区域内的深地震测深剖面和布格重力异常资料的分析结果,与深反射剖面的地壳结构图象具有一致性.深地震反射剖面通过1906年玛纳斯7.7级地震宏观震中区,共深度点叠加剖面用于推断玛纳斯7.7级地震与北天山山前地壳构造之间的关系:玛纳斯地震属于一类“褶皱地震”,其发震构造是由准噶尔南缘断裂、清水河逆冲断裂、滑脱面和玛纳斯浅部断坡组成的断层系. 展开更多
关键词 地壳结构 深地震反射剖面 逆断层-褶皱带 玛纳斯地震区 地震构造
下载PDF
Crustal structure of the northeastern Tibetan plateau,the Ordos block and the Sichuan basin from ambient noise tomography 被引量:45
2
作者 Yong Zheng Yingjie Yang +3 位作者 Michael H. Ritzwoller Xiufen Zheng Xiong Xiong Zuning Li 《Earthquake Science》 CSCD 2010年第5期465-476,共12页
We apply ambient noise tomography to significant seismic data resources in a region including the northeastern Tibetan plateau, the Ordos block and the Sichuan basin. The seismic data come from about 160 stations of t... We apply ambient noise tomography to significant seismic data resources in a region including the northeastern Tibetan plateau, the Ordos block and the Sichuan basin. The seismic data come from about 160 stations of the provincial broadband digital seismograph networks of China. Ambient noise cross-correlations are performed on the data recorded between 2007 and 2009 and high quality inter-station Rayleigh phase velocity dispersion curves are obtained between periods of 6 s to 35 s. Resulting Rayleigh wave phase velocity maps possess a lateral resolution between 100 km and 200 kin. The phase velocities at short periods (〈20 s) are lower in the Sichuan basin, the northwest segment of the Ordos block and the Weihe graben, and outline sedimentary deposits. At intermediate and long periods (〉25 s), strong high velocity anomalies are observed within the Ordos block and the Sichuan basin and low phase velocities are imaged in the northeastern Tibetan plateau, reflecting the variation of crustal thickness from the Tibetan plateau to the neighboring regions in the east. Crustal and uppermost mantle shear wave velocities vary strongly between the Tibetan plateau, the Sichuan basin and the Ordos block. The Ordos block and the Sichuan basin are dominated by high shear wave velocities in the crust and uppermost mantle. There is a triangle-shaped low velocity zone located in the northeastern Tibetan plateau, whose width narrows towards the eastern margin of the plateau. No low velocity zone is apparent beneath the Qinling orogen, suggesting that mass may not be able to flow eastward through the boundary between the Ordos block and the Sichuan basin in the crust and uppermost mantle. 展开更多
关键词 phase velocity Ordos block ambient noise tomography crustal structure
下载PDF
Crustal Structure Revealed by a Deep Seismic Sounding Profile of Baijing-Gaoming-Jinwan in the Pearl River Delta 被引量:10
3
作者 ZHANG Xiang YE Xiuwei +2 位作者 LV Jinshui SUN Jinlong WANG Xiaona 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第1期186-194,共9页
The Pearl River Estuary area, located in the middle part of the southern China coastal seismic belt, has long been considered a potential source of strong earthquakes above magnitude 7.0. To scientifically assess the ... The Pearl River Estuary area, located in the middle part of the southern China coastal seismic belt, has long been considered a potential source of strong earthquakes above magnitude 7.0. To scientifically assess the potential strong earthquake risk in this area, a three-dimensional artificial seismic sounding experiment, consisting of a receiving array and seabed seismograph, was performed to reveal the deep crustal structure in this region. We used artificial ship-borne air-gun excitation shots as sources, and fixed and mobile stations as receivers to record seismic data from May to August 2015. This paper presents results along a line from the western side of the Pearl River Estuary to the western side of the Baijing-Gaoming-Jinwan profile. A two-dimensional velocity structure was constructed using seismic travel-time tomography. The inversion results show that the Moho depth is 27 km in the coastal area and 30 km in the northwest of the Pearl River Estuary area, indicating that the crust thins from land to sea. Two structural discontinuities and multiple low-velocity anomalies appear in the crustal section. Inside both discontinuity zones, a low-velocity layer, with a minimum velocity of 6.05 km s^(-1), exists at a depth of about 15 km, and another, with a minimum velocity of 6.37 km s^(-1), exists at a depth of about 21.5 km between the middle and lower crust. These low velocities suggest that the discontinuities may consist of partly molten material. Earthquakes with magnitudes higher than 5.0 occurred in the low-velocity layer along the profile. The deep Kaiping-Enping fault, rooted in the crust, may be one of the most important channels for deep material upwelling and is related to tectonic movement since the Cretaceous in the Pearl River Delta tectonic rift basin. 展开更多
关键词 PEARL River Estuary seismic SOUNDING PROFILE crustal structure Kaiping-Enping fault earthquake potential
下载PDF
Crustal structure in Xiaojiang fault zone and its vicinity 被引量:14
4
作者 Chunyong Wang Hai Lou +3 位作者 Xili Wang Jiazheng Qin Runhai Yang Jinming Zhao 《Earthquake Science》 CSCD 2009年第4期347-356,共10页
Based on the integrative interpretation of travel-time data and amplitude information obtained from the deep seismic sounding experiment on the Chuxiong-Luoping profile, eastern Yunnan province, carried out in January... Based on the integrative interpretation of travel-time data and amplitude information obtained from the deep seismic sounding experiment on the Chuxiong-Luoping profile, eastern Yunnan province, carried out in January of 2005, we present a 2-D P wave velocity structure along the profile. The crustal structure shows remarkable contrasts between the two sides of the Xiaojiang fault zone, although the whole profile is situated within the Yangtze platform. The average P wave velocities of the crust on the west and east sides of the fault zone are 6.21 km/s and 6.32 km/s, respectively, and the crustal thicknesses are 41 km and 45 km, respectively. These results imply that the crust to the east of the Xiaojiang fault zone presents characteristics of crustal structure in a stable platform, while the crust to the west is complicated with a lower velocity zone in middle of the upper crust. The average velocity of 6.21 km/s is lower than the global continental crustal average (6.30 km/s), indicating that the region is tectonically active. According to the lateral variation of velocity and depth of interfaces (including the Moho), it is inferred that the Xiaojiang fault zone has cut through the whole crust. It is also deduced that existence of low velocity zone in middle of the upper crust is conducive to the south-southeastern sliding of the Sichuan- Yunnan (Chuan-Dian) rhombus block. 展开更多
关键词 Xiaojiang fault zone crustal structure deep seismic sounding SEISMICITY low velocity zone
下载PDF
Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography 被引量:11
5
作者 Biao Guo JiuHui Chen +1 位作者 QiYuan Liu ShunCheng Li 《Earth and Planetary Physics》 CSCD 2019年第3期232-242,共11页
The Qilian Orogen Zone(QOZ), located in the north margin of the Tibetan Plateau, is the key area for understanding the deformation and dynamics process of Tibet. Numerous geological and geophysical studies have been c... The Qilian Orogen Zone(QOZ), located in the north margin of the Tibetan Plateau, is the key area for understanding the deformation and dynamics process of Tibet. Numerous geological and geophysical studies have been carried out on the mechanics of the Tibetan Plateau deformation and uplift; however, the detailed structure and deformation style of the Qilian Orogen Zone have remained uncertain due to poor geophysical data coverage and limited resolution power of inversion algorithms. In this study, we analyze the P-wave velocity structure beneath the Qilian Orogen Zone, obtained by applying multi-scale seismic tomography technique to P-wave arrival time data recorded by regional seismic networks. The seismic tomography algorithm used in this study employs sparsity constraints on the wavelet representation of the velocity model via L1-norm regularization. This algorithm can deal efficiently with uneven-sampled volumes, and can obtain multi-scale images of the velocity model. Our results can be summarized as follows:(1) The crustal velocity structure is strongly inhomogeneous and consistent with the surface geological setting. Significant low-velocity anomalies exist in the crust of northeastern Tibet, and slight high-velocity anomalies exist beneath the Qaidam Basin and Alxa terrane.(2)The Qilian Orogen Zone can be divided into two main parts by the Laji Shan Faults: the northwestern part with a low-velocity feature, and the southeastern part with a high-velocity feature at the upper and middle crust.(3) Our tomographic images suggest that northwestern and southeastern Qilian Orogen Zones have undergone different tectonic processes. In the northwest Qilian Orogen Zone, the deformation and growth of the Northern Tibetan Plateau has extended to the Heli Shan and Beida Shan region by northward overthrusting at the upper crust and thickening in the lower crust. We speculate that in the southeast Qilian Orogen Zone the deformation and growth of the Northern Tibet Plateau were of strike-slip style at the upper crust; in the lower crust, the evidence suggests ductile shear extrusion style and active frontage extension to the Alxa terrane.(4) The multi-scale seismic tomography technique provides multiscale analysis and sparse constraints, which has allowed to us obtain stable, high-resolution results. 展开更多
关键词 QILIAN OROGEN ZONE crustal structure MULTI-SCALE seismic tomography
下载PDF
Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation 被引量:13
6
作者 WenAi Hou Chun-Feng Li +2 位作者 XiaoLi Wan MingHui Zhao XueLin Qiu 《Earth and Planetary Physics》 CSCD 2019年第4期314-329,共16页
The northeastern margin of the South China Sea (SCS), developed from continental rifting and breakup, is usually thought of as a non-volcanic margin. However, post-spreading volcanism is massive and lower crustal high... The northeastern margin of the South China Sea (SCS), developed from continental rifting and breakup, is usually thought of as a non-volcanic margin. However, post-spreading volcanism is massive and lower crustal high-velocity anomalies are widespread, which complicate the nature of the margin here. To better understand crustal seismic velocities, lithology, and geophysical properties, we present an S-wave velocity (VS) model and a VP/VS model for the northeastern margin by using an existing P-wave velocity (VP) model as the starting model for 2-D kinematic S-wave forward ray tracing. The Mesozoic sedimentary sequence has lower VP/VS ratios than the Cenozoic sequence;in between is a main interface of P-S conversion. Two isolated high-velocity zones (HVZ) are found in the lower crust of the continental slope, showing S-wave velocities of 4.0–4.2 km/s and VP/VS ratios of 1.73–1.78. These values indicate a mafic composition, most likely of amphibolite facies. Also, a VP/VS versus VP plot indicates a magnesium-rich gabbro facies from post-spreading mantle melting at temperatures higher than normal. A third high-velocity zone (VP : 7.0–7.8 km/s;VP/VS: 1.85–1.96), 70-km wide and 4-km thick in the continent-ocean transition zone, is most likely to be a consequence of serpentinization of upwelled upper mantle. Seismic velocity structures and also gravity anomalies indicate that mantle upwelling/ serpentinization could be the most severe in the northeasternmost continent-ocean boundary of the SCS. Empirical relationships between seismic velocity and degree of serpentinization suggest that serpentinite content decreases with depth, from 43% in the lower crust to 37% into the mantle. 展开更多
关键词 South China Sea CONTINENTAL margin crustal structure converted S-WAVE VP/VS ratio LITHOLOGY SERPENTINIZATION
下载PDF
Crustal structure beneath the Songpan——Garze orogenic belt 被引量:9
7
作者 王椿镛 韩渭宾 +2 位作者 吴建平 楼海 白志明 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第3期237-250,共14页
The Benzilan-Tangke deep seismic sounding profile in the western Sichuan region passes through the Song-pan-Garze orogenic belt with trend of NNE. Based on the travel times and the related amplitudes of phases in the ... The Benzilan-Tangke deep seismic sounding profile in the western Sichuan region passes through the Song-pan-Garze orogenic belt with trend of NNE. Based on the travel times and the related amplitudes of phases in the record sections, the 2-D P-wave crustal structure was ascertained in this paper. The velocity structure has quite strong lateral variation along the profile. The crust is divided into 5 layers, where the first, second and third layer belong to the upper crust, the forth and fifth layer belong to the lower crust. The low velocity anomaly zone gener-ally exists in the central part of the upper crust on the profile, and it integrates into the overlying low velocity basement in the area to the north of Ma'erkang. The crustal structure in the section can be divided into 4 parts: in the south of Garze-Litang fault, between Garze-Litang fault and Xianshuihe fault, between Xianshuihe fault and Longriba fault and in the north of Longriba fault, which are basically coincided with the regional tectonics division. The crustal thickness decreases from southwest to northeast along the profile, that is, from 62 km in the region of the Jinshajiang River to 52 km in the region of the Yellow River. The Moho discontinuity does not obviously change across the Xianshuihe fault based on the PmP phase analysis. The crustal average velocity along the profile is lower, about 6.30 km/s. The Benzilan-Tangke profile reveals that the crust in the study area is orogenic. The Xianshuihe fault belt is located in the central part of the profile, and the velocity is positive anomaly on the upper crust, and negative anomaly on the lower crust and upper mantle. It is considered as a deep tectonic setting in favor of strong earthquake's accumulation and occurrence. 展开更多
关键词 Tibetan plateau Songpan-Garze orogenic belt deep seismic sounding crustal and upper mantle structure low velocity layer
下载PDF
The Crustal Structure and Assembly of Terranes in the Qaidam-Qilian-Beishan Area, Western China 被引量:7
8
作者 LIU Xun GAO Rui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1998年第3期243-255,共13页
Abstract: Through a study of the geotransect from Golmud to Ejin Qi published recently, the tectonics of the crust beneath the area from the northern Qinghai-Tibet plateau (Qaidam and the Qilian Mountains) to the bord... Abstract: Through a study of the geotransect from Golmud to Ejin Qi published recently, the tectonics of the crust beneath the area from the northern Qinghai-Tibet plateau (Qaidam and the Qilian Mountains) to the border between China and Mongolia and its structure, composition and tectonic evolution have been revealed, and abundant information about the deep structures has been provided. Based on the research into the geotransect, it is suggested that the crust in this area was formed by the assembly of the terranes in different geological stages. Following the formation of the Palaeo-Asian continent, the north part of the corridor of the transect became a part of the huge unifying continent by the end of the Early Permian. In the Mesozoic and Cenozoic, as a result of the compression mainly by the push of the Qinghai-Tibet plateau on the south, the unique crustal structure and geomorphologic features on the northern Qinghai-Tibet plateau were formed. This geotransect together with the Yadong-Golmud geotransect constitutes a long geotransect which runs across the western Chinese continent. 展开更多
关键词 crustal structure terrane assembly western China
下载PDF
The inversion of 3-D crustal structure and hypocenter location in the Beijing-Tianjin-Tangshan-Zhangjiakou area by genetic algorithm 被引量:2
9
作者 万永革 刘瑞丰 李鸿吉 《Acta Seismologica Sinica(English Edition)》 CSCD 1997年第6期74-86,共13页
This paper discusses the inversion of velocity structure and hypocenters location in the Beijing Tianjin Tangshan Zhangjiakou area by genetic algorithm. The hypocenters location of sele... This paper discusses the inversion of velocity structure and hypocenters location in the Beijing Tianjin Tangshan Zhangjiakou area by genetic algorithm. The hypocenters location of selected earthquakes and crustal structure of this area are obtained using the travel time data of local earthquakes acquired by the Telemetered Seismic Network of Northern China. The mean and standard residuals of hypocenter location acquired by this method are much less than those provided by the report of respective earthquakes. The crustal structure of the first and the second layers obtained interpret the outline of the plain and mountain area in the region successfully and the crustal structure of the third layer nearly coincides with the Moho discontinuity obtained by artificial seismic sounding. These show the genetic algorithm is effective to the inversion of hypocenter location and three dimensional velocity structure. 展开更多
关键词 genetic algorithm HYPOCENTER crustal structure INVERSION non linear
下载PDF
Crustal structure beneath Cameroon from EGM2008 被引量:3
10
作者 Ngatchou Heutchi Evariste Liu Genyou +4 位作者 Tabod Charles Tabod Kamguia Joseph Nguiya Severin Tiedeu Alain KE Xiaoping 《Geodesy and Geodynamics》 2014年第1期1-10,共10页
We used the Earth Gravitational Model (EGM2008) data sets to analyze the regional gravity anoma- lies and to study the underground structures in Cameroon. We first created a high-resolution Free-Air anomaly database... We used the Earth Gravitational Model (EGM2008) data sets to analyze the regional gravity anoma- lies and to study the underground structures in Cameroon. We first created a high-resolution Free-Air anomaly database, then corrected the gravity field of the topographic effect by using ETOPO1 DEM with a resolution of 0.01~ to obtain the Bouguer anomaly, then applied a multi-scale wavelet-analysis technique to separate the gravity-field components into different parts of shallow-to-deep origins, and finally used the logarithmic power spectrum technique to obtain detailed images and corresponding source depths as well as certain lateral inho- mogeneity of structure density. The anomalies of shallow origin show successive elongated gravity "highs" and "lows" attributable to subsurface Tertiary and lower Cretaceous undulations. Our results are in good agreement with previous investigations. 展开更多
关键词 Cameroon EGM2008 gravity anomalies wavelet transform power spectrum crustal structure
下载PDF
Seismological study on the crustal structure of Tengchong volcanic-geothermal area 被引量:4
11
作者 王椿镛 楼海 +3 位作者 吴建平 白志明 皇甫岗 秦嘉政 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第3期247-259,共13页
Based upon the deep seismic sounding profile conducted in the Tengchong volcanic-geothermal area, a two-dimensional crustal P velocity structure is obtained by use of the finite-difference inversion and the forward tr... Based upon the deep seismic sounding profile conducted in the Tengchong volcanic-geothermal area, a two-dimensional crustal P velocity structure is obtained by use of the finite-difference inversion and the forward travel-time fitting method. The crustal model shows that there is a low velocity zone in upper crust in the Tengchong area, which may be related to the volcanic-geothermal activities, and two intracrustal faults (the LonglingRuili fault and Tengchong fault) exist on the profile, where the Tengchong fault may extend to the Moho discontinuity. Meanwhile, based on teleseismic data recorded by a temporary seismic network, we obtained the S-wave velocity structures beneath the RehaiRetian region in the Tengchong area, which show the low S-wave velocity anomaly in upper crust. The authors discuss the causes of Tengchong volcanic eruption based on the deep crustal structure. The crustal structure in the Tengchong volcanic-geothermal area is characterized by low P-wave and S-wave velocity, low resistivity, high heat-flow value and low Q value. The P-wave velocity in the upper mantle is also low. For this information, it can be induced that the magma in the crust is derived from the upper mantle, and the low velocity anomaly in upper crust in the Tengchong area may be related to the differentiation of magma. The Tengchong volcanoes are close to an active plate boundary and belong to plate boundary volcanoes. 展开更多
关键词 Tengchong volcanic area crustal structure deep seismic sounding travel-time fitting teleseismic waveform CLC number: P315.63 Document code: A
下载PDF
The upper and middle crustal velocity structure of the northern part of Hebei plain inferred from short period surface wave dispersion 被引量:2
12
作者 何正勤 张天中 +1 位作者 叶太兰 丁志峰 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第1期93-97,共5页
Based on short period Rayleigh wave data recorded by Beliing Seismic Telemetered Network, the dispersion curves of Raleigh wave phase velocity, with period from 2 s to 1 8 s, are calculated by means of two-station met... Based on short period Rayleigh wave data recorded by Beliing Seismic Telemetered Network, the dispersion curves of Raleigh wave phase velocity, with period from 2 s to 1 8 s, are calculated by means of two-station method, for 5 paths across the earthquake zone located in the Beijing graben and the Hebei plain. According to the dispersion features, the upper and middle crustal S wave velocity structures are respectively obtained for the northern segment of Beijing graben and the northern part of Hebei plain. The results show that there is an obvious interface at the depth of g kin in the Beijing graben, the velocity varies little with depth in the middle crust, and there is a low-velocity-zone, with a thickness of 5 km and a buried depth of 14.6 km, in the middle crust of the Hebei plain. 展开更多
关键词 Hebei plain Rayleigh wave crustal structure
下载PDF
Seismotectonics of the Taiwan Shoal Region in the Northeastern South China Sea:Insights from the Crustal Structure 被引量:1
13
作者 WAN Kuiyuan SUN Jinlong +6 位作者 XU Huilong XIE Xiaoling XIA Shaohong ZHANG Xiang CAO Jinghe ZHAO Fang FAN Chaoyan 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第1期156-168,共13页
A cluster of earthquakes occurred in the Taiwan Shoal region on the outer rise of the Manila Trench. Although most were of small to medium magnitudes, one strong earthquake occurred on September 16, 1994. Several prev... A cluster of earthquakes occurred in the Taiwan Shoal region on the outer rise of the Manila Trench. Although most were of small to medium magnitudes, one strong earthquake occurred on September 16, 1994. Several previous studies have provided important information to progress our understanding of this single earthquake. However, little is currently known about the earthquake cluster, and it is necessary to investigate the deep crustal structure of the Taiwan Shoal region to understand the mechanisms involved in controlling and generating it. This study presents a two-dimensional seismic tomographic image of the crustal structure along the OBS2012 profile based on ocean-bottom seismograph(OBS) data, which exhibits a high-velocity anomaly flanked by low-velocity anomalies in the upper crust beneath the Taiwan Shoal. In this study, 765 earthquakes(Richter magnitude ML > 1.5) occurring between 1991 and 2015 were studied and analyses of earthquake epicenters, regional faults, and the crustal structure provides an improved understanding of the nature of active tectonics in this region. Results of analyses indicate firstly that the high-velocity area represents major asperities that correspond to the location of the earthquake cluster and where stress is concentrated. It is also depicted that the earthquake cluster was influenced by fault interactions. However, the September 1994 earthquake occurred independently of these seismic activities and was associated with reactivation of a preexisting fault. It is also determined that slab pull is resisted by the exposed precollision accretionary prism, and the resistive force is causing accumulation of inplane compressive-stress. This may trigger a future damaging earthquake in the Taiwan Shoal region. 展开更多
关键词 earthquake cluster crustal structure fault interactions outer RISE TAIWAN SHOAL
下载PDF
Crustal Structure of the Chuan-Dian Block Revealed by Deep Seismic Sounding and its Implications for the Outward Expansion of the East Tibetan Plateau 被引量:4
14
作者 XIONG Xiaosong WANG Guan +4 位作者 LI Qiusheng LU Zhanwu GAO Rui FENG Shaoying WU Guowei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第6期1932-1944,共13页
The Chuan-Dian Block(CDB)is located in the southeastern margin of the Tibetan Plateau,with a complex geological structure and active regional faults.The present tectonic condition with strong crustal deformation is cl... The Chuan-Dian Block(CDB)is located in the southeastern margin of the Tibetan Plateau,with a complex geological structure and active regional faults.The present tectonic condition with strong crustal deformation is closely related to the ongoing collision of the India and Eurasia plates since 65 Ma.The study of the crustal structure of this area is key to revealing the evolution and deep geodynamics of the lateral collision zone of the Tibetan Plateau.Deep seismic sounding is the most efficient method with which to unravel the velocity structure of the whole crust.Since the 1980s,19 deep seismic sounding profiles have been captured within the CDB area.In this study,we systematically integrate the research results of the 19 profiles in this area,then image the 3D crustal velocity,by sampling with a 5 km spacing and 2D/3D Kriging interpolation.The results show the following.(1)The Moho depth in the study area deepens from 30 km in the south to 66 km in the north,whereas there is no apparent variation from west to east.The Pn wave velocity is higher in stable tectonic units,such as 7.95 km/s in the Lanping-Simao block and 7.94 km/s in the western margin of the Yangtze block,than in active or mobile tectonic units,such as 7.81 km/s in the Baoshan block,7.72 km/s in the Tengchong block and 7.82 km/s in the Zhongdian block.(2)The crustal nature of the Tengchong block,the northern Lanping-Simao block and the Zhongdian block reflects a type of orogenic belt,having relatively strong tectonic activities,whereas the crustal nature of the central Lanping-Simao block and the western margin of the Yangtze block represents a type of platform.The different features of the upper-middle crust velocity,Moho depth and Pn wave velocity to both sides of the Red River fault zone and the Xianshuihe fault zone,reflect that they are clearly ultra-crustal.(3)Based on the distribution of the low velocity zones in the crust,the crustal material of the Tibetan Plateau is flowing in a NW–SE direction to the north of 26°N and to the west of 101°E,then diverting to flowing eastwards to the east of 101°E. 展开更多
关键词 deep seismic sounding crustal structure outward expansion Chuan-Dian Block southeastern margin of the Tibetan Plateau
下载PDF
The Crustal Structure and Seismic Activity in North China 被引量:4
15
作者 Feng Rui Institute of Geophysics, State Seismological Bureau, Beijing Huang Guifang, Zheng Shuzhen, Wang Jun, Yan Huifen Geophysical Prospecting Party, State Seismological Bureau, Zhengzhou, Henan and Zhang Ruoshui Seismological Technique College, State Seismological Bureau, Yanjiao,Hebei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1989年第4期343-359,448-449,共19页
A layered crustal block model of North China has been constructed based on large amount of data from seismic sounding carried out in recent two decades. Some deep fault zones, such as the Zhangjiakou.Penglai and Tanch... A layered crustal block model of North China has been constructed based on large amount of data from seismic sounding carried out in recent two decades. Some deep fault zones, such as the Zhangjiakou.Penglai and Tancheng-Lujiang fault zones, divide the upper crust of North China into three upper crustal terranes and nine bolcks. There are distinct differences in velocity and depth distributions, which reflects Cenozoic block faulting in North China in the process of formation of the deep structure. The upper crust shows the features of transition in isostatic adjustment. The existence of a low-velocity layer in the middle crust is characteristic of the crustal structure in North China. There seems to be an increase of rheology of the rocks in the lower crust and a persistence of stable regional stress field. The patterns of the Moho on two sides of the Yanshan-Taihang Mountains are different. The relief of the Moho around Beijing, Shijiazhuang and Guangrao where the deep faults join together shows a quadrantal distribution in some degree. The dynamic sources for seismic activity are the NE-SW horizontal compression and the diapirism of the upper mantle. The middle and upper crust, especially the layered block structure has the most significant effects on seismicity, and the occurrence of earthquakes is more closely related to them than to the Moho. 展开更多
关键词 The crustal structure and Seismic Activity in North China ACTIVITY
下载PDF
Characteristic of crustal structure beneath the rifts in southern Tibetan plateau 被引量:1
16
作者 Yang Lei Liu Hongbing Zhao Junmeng 《Earthquake Science》 CSCD 2009年第4期373-377,共5页
The method of 2-D travel time inversion, which can be applied to determining 2-D velocity structure and interfaces simultaneously, is used in this paper to reprocess the data of Paiku Co-Pumoyingcuo seismic profile ac... The method of 2-D travel time inversion, which can be applied to determining 2-D velocity structure and interfaces simultaneously, is used in this paper to reprocess the data of Paiku Co-Pumoyingcuo seismic profile across the Nyima-Tingri rift and Shenzha-Dinggye rift. P-wave velocity structure and interfaces beneath the profile are obtained. The interfaces in the crust near Tingri and Dinggye which are located on rifts have a tendency to uplift, and velocities of middle and lower crusts are high. Low velocity layer in upper crust has an offset. Compared with the distribution of the earthquakes in this region, it is speculated that normal faults near Tingri and Dinggye extend to the upper mantle. Apparently it is affected by deep material: the uplift of mantle causes partial melting in the crust, thus the thickness of crust in this area becomes thin, and tension failures occur in this region easily. On the basis of the characteristics of the earthquakes' distribution and the structures of the crustal velocity and interfaces, materials from the mantle still uplifts and the failures are still active. 展开更多
关键词 riffs Southern Tibet travel time inversion velocity structure crustal interface
下载PDF
Relationship between the regional tectonic activity and crustal structure in the eastern Tibetan plateau discovered by gravity anomaly 被引量:1
17
作者 Xiao Xu Rui Gao Xiaoyu Guo 《Earthquake Science》 CSCD 2016年第2期71-81,共11页
The eastern Tibetan plateau has been getting more and more attention because it combines active faults,uplifting, and large earthquakes together in a high-population region. Based on the previous researches, the most ... The eastern Tibetan plateau has been getting more and more attention because it combines active faults,uplifting, and large earthquakes together in a high-population region. Based on the previous researches, the most of Cenozoic tectonic activities were related to the regional structure of the local blocks within the crustal scale. Thus,a better understanding of the crustal structure of the regional tectonic blocks is an important topic for further study. In this paper, we combined the simple Bouguer gravity anomaly with the Moho depths from previous studies to investigate the crustal structure in this area. To highlight the crustal structures, the gravity anomaly caused by the Moho relief has been reduced by forward modeling calculations. A total horizontal derivative(THD) had been applied on the gravity residuals. The results indicated that the crustal gravity residual is compatible with the topography and the geological settings of the regional blocks,including the Sichuan basin, the Chuxiong basin, the Xiaojiang fault, and the Jinhe fault, as well as the Longmenshan fault zone. The THD emphasized the west margin of Yangtze block, i.e., the Longriba fault zone and the Xiaojiang fault cut through the Yangtze block. The checkboard pattern of the gravity residual in the SongpanGarze fold belt and Chuandian fragment shows that the crust is undergoing a southward and SE-directed extrusion,which is coincident with the flowing direction indicatedfrom the GPS measurements. By integrating the interpretations, the stepwise extensional mechanism of the eastern Tibetan plateau is supported by the southeastward crustal deformation, and the extrusion of Chuandian fragment is achieved by Xianshuihe fault. 展开更多
关键词 Eastern Tibetan plateau Tectonic activity crustal structures Gravity anomaly
下载PDF
The geological structure background and the crustal structure in the northeastern margin of the Qinghai-Tibetan plateau 被引量:1
18
作者 周民都 吕太乙 +1 位作者 张元生 阮爱国 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2000年第6期687-697,718,共12页
The geological structure background, the crustal structure and the shape of Moho in the northeastern margin of the Qinghai-Tibetan plateau are studied. Based on artificial seismic sounding profile as well as geologica... The geological structure background, the crustal structure and the shape of Moho in the northeastern margin of the Qinghai-Tibetan plateau are studied. Based on artificial seismic sounding profile as well as geological data. The main results are summarized as follows: (1) The geotectonic subdivisions and the characteristics of main deep and large faults in the northeastern margin of the Qinghai-Tibetan plateau are presented; (2) The general features of the Moho are obtained mainly based on artificial seismic sounding data; (3) There exists well corresponding relation between surface faults and some features of the Moho, which suggests that such complex crustal structure might be the preparation environment of strong earthquakes. 展开更多
关键词 northeastern margin of the Qinghai-Tibetan plateau geological structure artificial seismic sounding crustal structure Mo?
下载PDF
Crustal structure beneath Liaoning province and the Bohai Sea and its adjacent region in China based on ambient noise tomography 被引量:1
19
作者 Guang-hua Pang Ji-Kun Feng Jun Lin 《Earthquake Science》 CSCD 2017年第1期1-15,共15页
The velocity structure of the crust beneath Liaoning province and the Bohai sea in China was imaged using ambient seismic noise recorded by 73 regional broadband stations. All available three-component time series fro... The velocity structure of the crust beneath Liaoning province and the Bohai sea in China was imaged using ambient seismic noise recorded by 73 regional broadband stations. All available three-component time series from the 12-month span between January and December 2013 were cross-correlated to yield empirical Green's functions for Rayleigh and Love waves. Phase- velocity dispersion curves for the Rayleigh waves and the Love waves were measured by applying the frequency- time analysis method. Dispersion measurements of the Rayleigh wave and the Love wave were then utilized to construct 2D phase-velocity maps for the Rayleigh wave at 8-35 s periods and the Love wave at 9-32 s periods, respectively. Both Rayleigh and Love phase-velocity maps show significant lateral variations that are correlated well with known geological features and tectonics units in the study region. Next, phase dispersion curves of the Rayleigh wave and the Love wave extracted from each cell of the 2D Rayleigh wave and Love wave phase-velocity maps, respectively, were inverted simultaneously to determine the 3D shear wave velocity structures. The horizontal shear wave velocity images clearly and intuitively exhibit that the earthquake swarms in the Haicheng region and the Tangshan region are mainly clustered in the transition zone between the low- and high-velocity zones in the upper crust, coinciding with fault zones, and their distribution is very closely associated with these faults. The vertical shear wave velocity image reveals that the lower crust downward to the uppermost mantle is featured by distinctly high velocities, with even a high-velocity thinner layer existing at the bottom of the lower crust near Moho in central and northern the Bohai sea along the Tanlu fault, and these phenomena could be caused by the intrusion of mantle material, indicating the Tanlu fault could be just as the uprising channel of deep materials. 展开更多
关键词 crustal structure Ambient noise tomography Earthquake swarm Liaoning Province Bohai Sea
下载PDF
Characteristic of crustal structure in the Shulu fault basin and its vicinity 被引量:1
20
作者 王椿镛 张先康 +1 位作者 林中洋 李学清 《Acta Seismologica Sinica(English Edition)》 CSCD 1994年第4期587-594,共8页
The deep seismic reflection profiling carried out in Xingtai earthquake area provides a new knowledge of the crustal structure of the Shulu fault basin and its vicinity. In the Ningjin-Xinhe and Lincheng-Julu deep sei... The deep seismic reflection profiling carried out in Xingtai earthquake area provides a new knowledge of the crustal structure of the Shulu fault basin and its vicinity. In the Ningjin-Xinhe and Lincheng-Julu deep seismic reflection profiles trending in NWW, CDP stack profiles respectively show a one-side fault basin (i. e. Shulu fault basin) within TWT 4. 0s. The width of the basin is about 15 km (Eogene system boundary), and Xinhe fault extends to below TWT 4. 0s (i. e. 8 km deep) with listric shape as a main boundary fault. These profiles also display distinctly a detachment in mid-crust. The Xinhe fault extends downward and converges to the detachment. The results of deep seismic sounding and magnetotelluric sounding indicate the low-velocity and highconductive zone beneath the detachment, which is beneficial to the detach between upper and lower plates. The Renxian-Ningjin deep seismic reflection profile trending in NNE lies within the fault basin, which shows the complicated structure of the basin. The shallow part of the profile is divided into three sub-basins by three lateral uplifts. In the mid-lower crust from Gengzhuangqiao to Xiaohezhuang of the profile, there are a lot of strong reflection events with laminae structure, which have been deformed strongly. Two NWW-trending profiles also have similar reflection feature. This may indicate that there is a relative large region where the magma upwell into mid-lower crust. The abnormal low velocity zone in lower crust indicates that the magmatism is still strong at present. The magmatism may be an important factor of the tectonic active region. 展开更多
关键词 crustal structure deep seismic reflection profile CDP stack DETACHMENT MAGMATISM
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部