The synthesis reaction of trichlorogermyl crylic acid has been studied systematically by using quantum chemistry methods for the first time.Geometries of reactants,transition states,and products have been optimized,re...The synthesis reaction of trichlorogermyl crylic acid has been studied systematically by using quantum chemistry methods for the first time.Geometries of reactants,transition states,and products have been optimized,respectively at the B3LYP/6-311G(d,p) level.Vibrational frequencies,IR intensities and relative energies for various stationary points have been determined.The reaction pathways are identified by intrinsic reaction coordinate(IRC)calculations.Theoretical analysis provided conclusive evidence that the process is completed through five pathways of addition reaction of double bond,and the transition states are found to be four- membered ring compounds.Solvent effects are taken into account with the PCM model at the same level.This preliminary study shows that the complex formation is favored by the use of polar solvent.展开更多
The compositions of copolymers of diethyldiallylammonium chloride (DEDAAC) with acrylamide (AM), acrylic acid (AA) or sodium acrylic acid (NaAA) at low conversion were determined by elemental analysis, and the...The compositions of copolymers of diethyldiallylammonium chloride (DEDAAC) with acrylamide (AM), acrylic acid (AA) or sodium acrylic acid (NaAA) at low conversion were determined by elemental analysis, and the reactivity ratios of monomers in copolymerization were obtained by Kelen-Tudos method. The results showed that the reactivity ratios rDE and rAM are 0.31 and 5.27 for DEDAAC with AM, rDE and rAA are 0.28 and 5.15 for DEDAAC with AA, and roe and rNsAA are 0.40 and 3.97 for DEDAAC with NaAA, respectively. The copolymerizations for DEDAAC with AM, AA or NaAA are non-ideal copolymerization and the products are random copolymers.展开更多
We measured the concentrations of dimethylsulfide(DMS),acrylic acid(AA),and dimethylsulfoniopropionate(DMSP) during growth of three microalgae:Prorocentrum micans,Gephyrocapsa oceanica,and Platymonas subcordiformis.Th...We measured the concentrations of dimethylsulfide(DMS),acrylic acid(AA),and dimethylsulfoniopropionate(DMSP) during growth of three microalgae:Prorocentrum micans,Gephyrocapsa oceanica,and Platymonas subcordiformis.The DMSP,AA,and DMS concentrations in culture media varied significantly among algal growth stages,with the highest concentrations in the late stationary growth stage or the senescent stage.In the stationary growth stage,the average DMSP concentration per cell in P.micans(0.066 5 pmol/cell) was 1.3 times that in G.oceanica(0.049 5 pmol/cell) and 20.2 times that in P.subcordiformis(0.003 29 pmol/cell).The average concentrations of AA were0.044 6,0.026 9,and 0.003 05 pmol/cell in P.micans,G.oceanica,and P.subcordiformis,respectively,higher than the concentrations of DMS(0.272,0.497,and 0.086 2 fmol/cell,respectively).There were significant positive correlations between cell density and AA,DMSP,and DMS concentrations.The ratios of DMS/AA and AA/(DMSP+AA) in the three algae differed significantly over the growth cycle.In all three microalgae,the DMS/AA ratios were less than 25%during the growth period,suggesting that the enzymatic cleavage pathway,which generates DMS,was not the main DMSP degradation pathway.The changes in the DMS/AA ratio indicated that there was a higher rate of enzymatic breakdown of DMSP in the early growth period and a lower rate during senescence.In all three microalgae,the AA/(DMSP+AA) ratio(degradation ratio of DMSP) decreased during the exponential growth phase,and then increased.The variations in these ratios can approximately indicate the cleavage mechanism of DMSP at different stages of algal growth.展开更多
In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) ...In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) and acrylic acid (AA), in which N,N'-methylenebisacrylamide (MBA) was used as a crosslinker. A mechanism for the synthesis of P(AM-co-AA) hydrogel was proposed. To optimize the synthesis condition, the following parameters were examined in detail: the discharge voltage, discharge time, the content of the crosslinker, and the mass ratio of AM to AA. The results showed that the optimum pH range for cationic dyes removal was found to be 5.0-10.0. The P(AM-co-AA) hydrogel exhibits a very high adsorption potential and the ex- perimental adsorption capacities for Crystal violet (CV) and Methylene blue (MB) were 2974.3 mg/g and 2303.6 mg/g, respectively. The adsorption process follows a pseudo-second-order kinetic model. In addition, the adsorption mechanism of P(AM-co-AA) hydrogel for cationic dyes was also discussed.展开更多
The present status and development trends of nano-composite coatings were briefly introduced. The nano-SiO2 was dispersed into crylic acid resin by ultrasonic wave and high-energy ball milling, the influence of nano-S...The present status and development trends of nano-composite coatings were briefly introduced. The nano-SiO2 was dispersed into crylic acid resin by ultrasonic wave and high-energy ball milling, the influence of nano-SiO2 on shielding property of coatings was investigated. Relation between particle size distribution of original nano-SiO2 and its dispersal in water and alcohol after treatment were analyzed, respectively. The ultraviolet permeation rate of coatings filled with nano-SiO2 was detected by ultraviolet spectral photometer. And the particle size distribution of coatings was examined by TEM. The results show that particle size distribution is comparative convergence and smaller one order of magnitude after dispersal treatment. The size of most nano-SiO2 in coatings is smaller than 100nm, which indicates that the amount of nano-SiO2 in the resin is 20% (solid content of resin), the permeation rate of ultraviolet of composite coatings decreases to 20%. The research of its excellent ultraviolet shielding property mechanism indicates minor size and high surface energy of nano-SiO2 can produce different absorption, reflection and scatter actions to different wavelengths.展开更多
The kinetics of free-radical crosslinking co-polymerization(FRCCP)of acrylic acid(AA)with both methacrylic acid(MA)(PAMA hydrogel)and maleic acid(MAL)(PAMAL hydrogel)was investigated under the conditions of isothermal...The kinetics of free-radical crosslinking co-polymerization(FRCCP)of acrylic acid(AA)with both methacrylic acid(MA)(PAMA hydrogel)and maleic acid(MAL)(PAMAL hydrogel)was investigated under the conditions of isothermal conventional heating(CH)and under the conditions of microwave heating(MWH)with controlled cooling.The kinetics curves of FRCCP of PAMA and PAMAL hydrogels under the conditions of CH are described with the kinetics model of second order chemical reaction,whereas the kinetics curves under the conditions of CH are described with the kinetics model of Polany-Winger.It is proved that MWH leads to the changes in the rate of FRCCP and to the changes in the values of the kinetic parameters activation energy(Ea)and pre-exponential factor(lnA).It was found the existence of relationship between the values of the kinetic parameters calculated for MWH and CH for PAMA and PAMAL hydrogel synthesis process,which is well-known as compensation effect.The effect of MWH on the kinetics of FRCCP for PAMA and PAMAL hydrogel formation were explained by applying the model of activation by selective energy transfer(SET).The changes in kinetics model,rate of FRCCP and kinetics parameters,caused with the MWH can found wide application in designing novel technologies for obtaining polymers and for synthesis of polymers with novel physico-chemical properties.The suggested mechanism of activation for polymerisation under the conditions of MWH also enables development of novel reaction systems and technologies for polymers productions.展开更多
Over recent decades, Gampaha district, Sri Lanka, has experienced significant urbanisation and industrial growth, increasing groundwater demand due to limited and polluted surface water resources. In 2013, a community...Over recent decades, Gampaha district, Sri Lanka, has experienced significant urbanisation and industrial growth, increasing groundwater demand due to limited and polluted surface water resources. In 2013, a community uprising in Rathupaswala, a village in Gampaha district, accused a latex glove manufacturing factory of causing groundwater acidity (pH < 4). This study evaluates the spatial and temporal changes in geochemical parameters across three transects in the southern part of Gampaha district to 1) assess the impact of geological formations on groundwater;2) compare temporal variations in groundwater;and 3) explain acidification via a geochemical model. Seventy-two sample locations were tested for pH, electrical conductivity (EC), and anion concentrations (sulphate, nitrate, chloride and fluoride). Depth to the water table and distance from the sea were measured to study variations across sandy, peaty, lateritic, and crystalline aquifers. Results showed pH readings around 7 for sandy and crystalline aquifers, below 7 for peaty aquifers, and below 5 for lateritic aquifers, with significant water table fluctuations near Rathupaswala area. Principal component analysis revealed three principal components (PCs) explaining 86.0% of the variance. PC1 (40.6%) correlated with pH, EC, and sulphate (saltwater intrusion), while PC2 (32.0%) correlated with nitrates and depth to the water table (anthropogenic nutrient pollution). A geochemical transport model indicated a cone of depression recharged by acidic groundwater from peat-soil aquifers, leading to acidic groundwater in Rathupaswala area. Previous attributions of acidic pH to the over-exploitation of groundwater by the latex factory have been reevaluated;the results suggest natural acidification from prolonged water-rock interactions with iron-rich lateritic aquifers. Groundwater pH is influenced by local climate, geology, topography, and drainage systems. It is recommended that similar water-rock interaction conditions may be present throughout the wet zone of Sri Lanka, warranting detailed studies to confirm this hypothesis.展开更多
基金supported by the Natural Science Foundation of Shandong Province(No.Y2003B03,Y2006B42).
文摘The synthesis reaction of trichlorogermyl crylic acid has been studied systematically by using quantum chemistry methods for the first time.Geometries of reactants,transition states,and products have been optimized,respectively at the B3LYP/6-311G(d,p) level.Vibrational frequencies,IR intensities and relative energies for various stationary points have been determined.The reaction pathways are identified by intrinsic reaction coordinate(IRC)calculations.Theoretical analysis provided conclusive evidence that the process is completed through five pathways of addition reaction of double bond,and the transition states are found to be four- membered ring compounds.Solvent effects are taken into account with the PCM model at the same level.This preliminary study shows that the complex formation is favored by the use of polar solvent.
文摘The compositions of copolymers of diethyldiallylammonium chloride (DEDAAC) with acrylamide (AM), acrylic acid (AA) or sodium acrylic acid (NaAA) at low conversion were determined by elemental analysis, and the reactivity ratios of monomers in copolymerization were obtained by Kelen-Tudos method. The results showed that the reactivity ratios rDE and rAM are 0.31 and 5.27 for DEDAAC with AM, rDE and rAA are 0.28 and 5.15 for DEDAAC with AA, and roe and rNsAA are 0.40 and 3.97 for DEDAAC with NaAA, respectively. The copolymerizations for DEDAAC with AM, AA or NaAA are non-ideal copolymerization and the products are random copolymers.
基金Supported by the National Natural Science Foundation of China(No.41176062)
文摘We measured the concentrations of dimethylsulfide(DMS),acrylic acid(AA),and dimethylsulfoniopropionate(DMSP) during growth of three microalgae:Prorocentrum micans,Gephyrocapsa oceanica,and Platymonas subcordiformis.The DMSP,AA,and DMS concentrations in culture media varied significantly among algal growth stages,with the highest concentrations in the late stationary growth stage or the senescent stage.In the stationary growth stage,the average DMSP concentration per cell in P.micans(0.066 5 pmol/cell) was 1.3 times that in G.oceanica(0.049 5 pmol/cell) and 20.2 times that in P.subcordiformis(0.003 29 pmol/cell).The average concentrations of AA were0.044 6,0.026 9,and 0.003 05 pmol/cell in P.micans,G.oceanica,and P.subcordiformis,respectively,higher than the concentrations of DMS(0.272,0.497,and 0.086 2 fmol/cell,respectively).There were significant positive correlations between cell density and AA,DMSP,and DMS concentrations.The ratios of DMS/AA and AA/(DMSP+AA) in the three algae differed significantly over the growth cycle.In all three microalgae,the DMS/AA ratios were less than 25%during the growth period,suggesting that the enzymatic cleavage pathway,which generates DMS,was not the main DMSP degradation pathway.The changes in the DMS/AA ratio indicated that there was a higher rate of enzymatic breakdown of DMSP in the early growth period and a lower rate during senescence.In all three microalgae,the AA/(DMSP+AA) ratio(degradation ratio of DMSP) decreased during the exponential growth phase,and then increased.The variations in these ratios can approximately indicate the cleavage mechanism of DMSP at different stages of algal growth.
基金supported by National Natural Science Foundation of China(No.21367023)Natural Science Foundation of Gansu Province,China(No.1208RJZA161)Key Project of Young Teachers’ Scientific Research Promotion of Northwest Normal University of China(Nos.NWNU-LKQN-10-16 and NWNU-LKQN-12-9)
文摘In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) and acrylic acid (AA), in which N,N'-methylenebisacrylamide (MBA) was used as a crosslinker. A mechanism for the synthesis of P(AM-co-AA) hydrogel was proposed. To optimize the synthesis condition, the following parameters were examined in detail: the discharge voltage, discharge time, the content of the crosslinker, and the mass ratio of AM to AA. The results showed that the optimum pH range for cationic dyes removal was found to be 5.0-10.0. The P(AM-co-AA) hydrogel exhibits a very high adsorption potential and the ex- perimental adsorption capacities for Crystal violet (CV) and Methylene blue (MB) were 2974.3 mg/g and 2303.6 mg/g, respectively. The adsorption process follows a pseudo-second-order kinetic model. In addition, the adsorption mechanism of P(AM-co-AA) hydrogel for cationic dyes was also discussed.
文摘The present status and development trends of nano-composite coatings were briefly introduced. The nano-SiO2 was dispersed into crylic acid resin by ultrasonic wave and high-energy ball milling, the influence of nano-SiO2 on shielding property of coatings was investigated. Relation between particle size distribution of original nano-SiO2 and its dispersal in water and alcohol after treatment were analyzed, respectively. The ultraviolet permeation rate of coatings filled with nano-SiO2 was detected by ultraviolet spectral photometer. And the particle size distribution of coatings was examined by TEM. The results show that particle size distribution is comparative convergence and smaller one order of magnitude after dispersal treatment. The size of most nano-SiO2 in coatings is smaller than 100nm, which indicates that the amount of nano-SiO2 in the resin is 20% (solid content of resin), the permeation rate of ultraviolet of composite coatings decreases to 20%. The research of its excellent ultraviolet shielding property mechanism indicates minor size and high surface energy of nano-SiO2 can produce different absorption, reflection and scatter actions to different wavelengths.
基金the Ministry of Science and Technical Development of the Republic of Serbia,through Project No.172015 OI.
文摘The kinetics of free-radical crosslinking co-polymerization(FRCCP)of acrylic acid(AA)with both methacrylic acid(MA)(PAMA hydrogel)and maleic acid(MAL)(PAMAL hydrogel)was investigated under the conditions of isothermal conventional heating(CH)and under the conditions of microwave heating(MWH)with controlled cooling.The kinetics curves of FRCCP of PAMA and PAMAL hydrogels under the conditions of CH are described with the kinetics model of second order chemical reaction,whereas the kinetics curves under the conditions of CH are described with the kinetics model of Polany-Winger.It is proved that MWH leads to the changes in the rate of FRCCP and to the changes in the values of the kinetic parameters activation energy(Ea)and pre-exponential factor(lnA).It was found the existence of relationship between the values of the kinetic parameters calculated for MWH and CH for PAMA and PAMAL hydrogel synthesis process,which is well-known as compensation effect.The effect of MWH on the kinetics of FRCCP for PAMA and PAMAL hydrogel formation were explained by applying the model of activation by selective energy transfer(SET).The changes in kinetics model,rate of FRCCP and kinetics parameters,caused with the MWH can found wide application in designing novel technologies for obtaining polymers and for synthesis of polymers with novel physico-chemical properties.The suggested mechanism of activation for polymerisation under the conditions of MWH also enables development of novel reaction systems and technologies for polymers productions.
文摘Over recent decades, Gampaha district, Sri Lanka, has experienced significant urbanisation and industrial growth, increasing groundwater demand due to limited and polluted surface water resources. In 2013, a community uprising in Rathupaswala, a village in Gampaha district, accused a latex glove manufacturing factory of causing groundwater acidity (pH < 4). This study evaluates the spatial and temporal changes in geochemical parameters across three transects in the southern part of Gampaha district to 1) assess the impact of geological formations on groundwater;2) compare temporal variations in groundwater;and 3) explain acidification via a geochemical model. Seventy-two sample locations were tested for pH, electrical conductivity (EC), and anion concentrations (sulphate, nitrate, chloride and fluoride). Depth to the water table and distance from the sea were measured to study variations across sandy, peaty, lateritic, and crystalline aquifers. Results showed pH readings around 7 for sandy and crystalline aquifers, below 7 for peaty aquifers, and below 5 for lateritic aquifers, with significant water table fluctuations near Rathupaswala area. Principal component analysis revealed three principal components (PCs) explaining 86.0% of the variance. PC1 (40.6%) correlated with pH, EC, and sulphate (saltwater intrusion), while PC2 (32.0%) correlated with nitrates and depth to the water table (anthropogenic nutrient pollution). A geochemical transport model indicated a cone of depression recharged by acidic groundwater from peat-soil aquifers, leading to acidic groundwater in Rathupaswala area. Previous attributions of acidic pH to the over-exploitation of groundwater by the latex factory have been reevaluated;the results suggest natural acidification from prolonged water-rock interactions with iron-rich lateritic aquifers. Groundwater pH is influenced by local climate, geology, topography, and drainage systems. It is recommended that similar water-rock interaction conditions may be present throughout the wet zone of Sri Lanka, warranting detailed studies to confirm this hypothesis.